×

zbMATH — the first resource for mathematics

On the MHD flow of a second-grade fluid in a porous channel. (English) Zbl 1123.76072
Summary: We consider the steady flow of a second-grade fluid in porous channel. The fluid is electrically conducting in the presence of a uniform magnetic field applied in the transverse direction to the flow. It is shown that an analytical solution is possible by employing a homotopy analysis method. The convergence of the obtained solution is demonstrated, and the influence of various parameters of interest on the velocity is examined.

MSC:
76W05 Magnetohydrodynamics and electrohydrodynamics
76A05 Non-Newtonian fluids
76S05 Flows in porous media; filtration; seepage
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hartman, J., Theory of the laminar flow of an electrically conducting liquid in a homogeneous magnetic field, Math.- fys. medd., 15, 6, (1937)
[2] Hayat, T.; Wang, Y.; Hutter, K., Hall effects on the unsteady hydromagnetic oscillatory flow of a second grade fluid, Internat. J. non-linear mech., 39, 1027-1037, (2004) · Zbl 1348.76187
[3] Rajagopal, K.R., A note on unsteady unidirectional flows of a non-Newtonian fluid, Internat. J. non-linear mech., 17, 369-373, (1982) · Zbl 0527.76003
[4] Rajagopal, K.R., On the creeping flow of a second grade fluid, J. non-Newtonian fluid mech., 15, 239-246, (1984) · Zbl 0568.76015
[5] Bandelli, R., Unsteady unidirectional flows of a second grade fluid in domain with heated boundaries, Internat. J. non-linear mech., 38, 263-269, (1995) · Zbl 0837.76004
[6] Fetecau, C.; Fetecau, C., A new exact solution for the flow of Maxwell fluid past an infinite plate, Internat. J. non-linear mech., 38, 423-427, (2003) · Zbl 1287.76041
[7] Fetecau, C.; Fetecau, C., The rayleigh – stokes problem for a fluid of Maxwellian type, Internat. J. non-linear mech., 38, 603-607, (2003) · Zbl 1287.76042
[8] Fetecau, C.; Fetecau, C., Decay of a potential vortex in a Maxwell fluid, Internat. J. non-linear mech., 38, 985-990, (2003) · Zbl 1287.76043
[9] Fetecau, C.; Fetecau, C., Starting solutions for some unsteady unidirectional flows of a second grade fluid, Internat. J. engrg. sci., 43, 781-789, (2005) · Zbl 1211.76032
[10] Asghar, S.; Hayat, T.; Siddiqui, A.M., Moving boundary in a non-Newtonian fluid, Internat. J. non-linear mech., 37, 75-80, (2002) · Zbl 1116.76310
[11] Hayat, T., Oscillatory solution in rotating flow of a johnson – segalman fluid, Z. angew. math. mech., 85, 449-456, (2005) · Zbl 1071.76063
[12] Hayat, T.; Nadeem, S.; Asghar, S., Periodic unidirectional flows of a viscoelastic fluid with the fractional Maxwell model, Appl. math. comput., 151, 153-161, (2004) · Zbl 1161.76436
[13] Chen, C.I.; Chen, C.K.; Yang, Y.T., Unsteady unidirectional flow of an Oldroyd-B fluid in a circular duct with different given volume flow rate conditions, Heat mass transfer, 40, 203-209, (2004)
[14] Tan, W.C.; Masuoka, T., Stokes first problem for second grade fluid in a porous half space, Internat. J. non-linear mech., 40, 515-522, (2005) · Zbl 1349.76830
[15] Choi, J.J.; Rusak, Z.; Tichy, J.A., Maxwell fluid suction flow in a channel, J. non-Newtonian fluid mech., 85, 165-187, (1999) · Zbl 0941.76079
[16] Sadeghy, K.; Sharifi, M., Local similarity solution for the flow of a “second-grade” viscoelastic fluid above a moving plate, Internat. J. non-linear mech., 39, 1265-1273, (2004) · Zbl 1348.76064
[17] Sadeghy, K.; Najafi, A.H.; Saffaripour, M., Sakiadis flow of an upper-convected Maxwell fluid, Internat. J. non-linear mech., 40, 1220-1228, (2005) · Zbl 1349.76081
[18] Cortell, R., Similarity solutions for flow and heat transfer in a viscoelastic fluid over a stretching sheet, Internat. J. non-linear mech., 29, 155-161, (1994) · Zbl 0795.76010
[19] Cortell, R., A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet, Appl. math. comput., 168, 557-566, (2005) · Zbl 1081.76059
[20] Cortell, R., A note on flow and heat transfer of viscoelastic fluid over a stretching sheet, Internat. J. non-linear mech., 41, 78-85, (2006) · Zbl 1160.80302
[21] Abbas, Z.; Sajid, M.; Hayat, T., MHD boundary-layer flow of an upper-convected Maxwell fluid in a porous channel, Theor. comput. fluid dyn., 20, 229-238, (2006) · Zbl 1109.76065
[22] Liao, S.J., Beyond perturbation: introduction to homotopy analysis method, (2003), Chapman & Hall/CRC Press Boca Raton
[23] Liao, S.J., On the homotopy analysis method for nonlinear problems, Appl. math. comput., 147, 499-513, (2004) · Zbl 1086.35005
[24] Wang, Z.K.; Cao, T.A., An introduction in homotopy method, (1991), Chonqing Publishing House Chongquing
[25] Liao, S.J., A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate, J. fluid mech., 385, 101-128, (1999) · Zbl 0931.76017
[26] Liao, S.J.; Campo, A., Analytic solution of the temperature distribution in Blasius viscous flow problems, J. fluid mech., 453, 411-425, (2002) · Zbl 1007.76014
[27] Liao, S.J., On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet, J. fluid mech., 488, 189-212, (2003) · Zbl 1063.76671
[28] Liao, S.J.; Cheung, K.F., Homotopy analysis of nonlinear progressive waves in deep water, J. eng. math., 45, 105-116, (2003) · Zbl 1112.76316
[29] Wu, Y.Y.; Wang, C.; Liao, S.J., Solving the one loop solution of the Vakhnenko equation by means of the homotopy analysis method, Chaos solitons fractals, 23, 1733-1740, (2005) · Zbl 1069.35060
[30] Ayub, M.; Rasheed, A.; Hayat, T., Exact flow of a third grade fluid past a porous plate using homotopy analysis method, Internat. J. engrg. sci., 41, 2091-2103, (2003) · Zbl 1211.76076
[31] Hayat, T.; Khan, M.; Ayub, M., On the explicit analytic solution of an Oldroyd 6-constant fluid, Internat. J. engrg. sci., 42, 123-135, (2001) · Zbl 1211.76009
[32] Hayat, T.; Khan, M.; Ayub, M., Couette and Poiseuille flows of an oldroyed 6-constant fluid with magnetic field, J. math. anal. appl., 289, 225-244, (2004) · Zbl 1067.35074
[33] Hayat, T.; Khan, M.; Asghar, S., Homotopy analysis of MHD flows of an oldroyed 8-constant fluid, Acta mech., 168, 213-232, (2004) · Zbl 1063.76108
[34] Yang, C.; Liao, S.J., On the explicit purely analytic solution of von karman swirling viscous flow, Commun. nonlinear sci. numer. simul., 11, 83-93, (2006) · Zbl 1075.35059
[35] Liao, S.J., An analytic solution of unsteady boundary-layer flows caused by an impulsively stretching plate, Commun. nonlinear sci. numer. simul., 11, 326-339, (2006) · Zbl 1078.76022
[36] Hayat, T.; Khan, M., Homotopy solution for generalized second grade fluid past a porous plate, Nonlinear dynam., 42, 395-405, (2005) · Zbl 1094.76005
[37] Sajid, M.; Hayat, T.; Asghar, S., On the analytic solution of the steady flow of a fourth grade fluid, Phys. lett. A, 355, 18-26, (2006)
[38] Cortell, R., Flow and heat transfer of an electrically conducting fluid of a second grade over a stretching sheet subject to suction and to a transverse magnetic field, Int. J. heat mass transfer, 49, 1851-1856, (2006) · Zbl 1189.76778
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.