×

Impulsive control of a financial model. (English) Zbl 1123.91325

Summary: In this Letter, several new theorems on the stability of impulsive control systems are presented. These theorem are then used to find the conditions under which an advertising strategy can be asymptotically control to the equilibrium point by using impulsive control. Given the parameters of the financial model and the impulsive control law, an estimation of the upper bound of the impulse interval is given, i.e., number of advert can been decreased (i.e., can decrease cost) for to obtain the equivalent advertising effect. The result is illustrated to be efficient through a numerical example.

MSC:

91B28 Finance etc. (MSC2000)
93C99 Model systems in control theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Amritkar, R.E.; Gupta, N., Phys. rev. E, 47, 3889, (1993)
[2] Akingele, O., Nonlin. anal., 39, 247, (2000)
[3] Bainov, D.; Kolev, D.; Motreanu, D., Panam. math. J., 11, 2, 81, (2001)
[4] Bainov, D.; Kolev, D.; Nakagawa, K., Commun. appl. anal., 7, 2, 281, (2003)
[5] Bainov, D.; Kolev, D.; Nakagawa, K., Commun. appl. anal., 7, 3, 359, (2003)
[6] Chen, G.; Dong, X., Int. J. bifur. chaos, 3, 1363, (1993)
[7] Chua, L.O.; Yang, T.; Zhong, G.Q.; Wu, C.W., Int. J. bifur. chaos, 6, 189, (1996)
[8] Huller, E., J. econom. dynamics control, 6, 333, (1983)
[9] Hunt, E.R.; Johnson, G., IEEE spectrum, 32, (1993)
[10] Lakshmikantham, V.; Bainov, D.; Simeonov, P.S., Theory of impulsive differential equations, (1989), World Scientific Singapore · Zbl 0719.34002
[11] Li, Z.G.; Wen, C.Y.; Soh, Y.C., IEEE trans. automatic control, 46, 894, (2001) · Zbl 1001.93068
[12] Li, Z.G.; Wen, C.Y.; Soh, Y.C.; Xie, W.X., IEEE trans. circuits systems I, 48, 1351, (2001)
[13] Ott, E.; Grebogi, C.; Yorke, J.A., Phys. rev. lett., 64, 1196, (1990)
[14] Peng, B.; Petrov, V.; Showalter, K., Phys. chem., 95, 4957, (1991)
[15] Pyragas, K., Phys. lett. A, 170, 421, (1992)
[16] Samoilenko, A.M.; Perestyuk, N.A., Impulsive differential equations, (1995), World Scientific Singapore · Zbl 0837.34003
[17] Schweizer, J.; Kennedy, M.P., Phys. rev. E, 52, 4865, (1995)
[18] Stojanovski, T.; Kocarev, L.; Parlitz, U., Phys. rev. E, 43, 782, (1996)
[19] Sun, J.T.; Zhang, Y.P.; Wu, Q.D., Phys. lett. A, 298, 153, (2002)
[20] Sun, J.T.; Zhang, Y.P.; Wang, L.; Wu, Q.D., Phys. lett. A, 304, 130, (2002)
[21] Sun, J.T.; Zhang, Y.P.; Wu, Q.D., IEEE trans. automatic control, 48, 829, (2003)
[22] Sun, J.T.; Zhang, Y.P., J. comput. appl. math., 157, 235, (2003)
[23] Sun, J.T.; Zhang, Y.P.; Qiao, F.; Wu, Q.D., Chaos solitons fractals, 19, 5, 1049, (2004)
[24] Sun, J.T., Math. comput. simulation, 64, 6, 669, (2004)
[25] Wu, C.W.; Yang, T.; Chua, L.O., Int. J. bifur. chaos, 6, 455, (1996)
[26] Xie, W.X.; Wen, C.Y.; Li, Z.G., Phys. lett. A, 275, 67, (2000)
[27] Yang, T.; Yang, L.B.; Yang, C.M., Phys. lett. A, 226, 349, (1997)
[28] Yang, T.; Chua, L.O., Int. J. bifur. chaos, 7, 645, (1997)
[29] Yang, T.; Yang, L.B.; Yang, C.M., Physica D, 110, 18, (1997)
[30] Yang, T.; Chua, L.O., IEEE trans. circuits systems I, 44, 976, (1997)
[31] Yang, T., IEEE trans. automatic control, 44, 1081, (1999)
[32] Yang, T., Impulsive systems and control: theory and applications, (2001), Nova Science Huntington, NY
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.