×

zbMATH — the first resource for mathematics

Stochastic adaptive backstepping controller design by introducing dynamic signal and changing supply function. (English) Zbl 1124.93057
Summary: A more general class of stochastic non-linear systems with unmodelled dynamics and uncertain non-linear functions are considered in this paper. With the concept of ISpS being extended to stochastic case, by combining changing supply function technique with backstepping design technique, an adaptive output-feedback controller is proposed. It is shown that all the solutions of the closed-loop system are uniformly bounded in probability, and the output can be regulated to an arbitrarily small neighbourhood of the origin in probability. A simulation example demonstrates the control scheme.

MSC:
93E03 Stochastic systems in control theory (general)
93C40 Adaptive control/observation systems
93C10 Nonlinear systems in control theory
93B52 Feedback control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Başar T, Doing Social Research, 2. ed. (1995)
[2] Deng H, Syst. Contr. Lett. 32 pp 143– (1997) · Zbl 0902.93049
[3] Deng H, Syst. Contr. Lett. 32 pp 151– (1997) · Zbl 0902.93050
[4] Deng H, IEEE Trans. Automat. Contr. 44 pp 328– (1999) · Zbl 0958.93095
[5] Deng H, Syst. Contr. Lett. 39 pp 173– (2000) · Zbl 0948.93053
[6] Deng H, IEEE Trans. Automat. Contr. 46 pp 1237– (2001) · Zbl 1008.93068
[7] Florchinger P, Stochastic Analysis and Applications 11 pp 155– (1993) · Zbl 0770.60058
[8] Florchinger P, SIAM J. Contr. Opt. 33 pp 1151– (1995) · Zbl 0845.93085
[9] Florchinger P, SIAM J. Contr. Opt. 35 pp 500– (1997) · Zbl 0874.93092
[10] Isidori A, Nonlinear Control Systems, 3. ed. (1995)
[11] James MR, IEEE Trans. Automat. Contr. 39 pp 780– (1994) · Zbl 0807.93067
[12] Jiang ZP, Automatica 35 pp 1131– (1999) · Zbl 0932.93045
[13] Jiang ZP, IEEE Trans. Automat. Contr. 42 pp 292– (1997) · Zbl 0869.93004
[14] Jiang ZP, Automatica 34 pp 825– (1998) · Zbl 0951.93042
[15] Jiang ZP, Automatica 40 pp 2129– (2004)
[16] Jiang ZP, Automatica 32 pp 1211– (1996) · Zbl 0857.93089
[17] Jiang ZP, Math. Contr. Sigal Syst. 7 pp 95– (1994) · Zbl 0836.93054
[18] Khalil HK, Nonlinear Systems, 2. ed. (1995)
[19] Khas’minski RZ, Stochastic Stability of Differential Equations (1980)
[20] Krstić M, Stochastic Stability of Differential Equations (1995)
[21] Kushner HJ, Stochastic Stability and Control (1967)
[22] Liu Y, Syst. Contr. Lett. 52 pp 123– (2004) · Zbl 1157.93538
[23] Liu Y, Science in China Ser. F 47 pp 527– (2004) · Zbl 1186.93065
[24] Liu Y, IEEE Trans. Automat. Contr. 48 pp 509– (2003) · Zbl 1364.93283
[25] Marino R, Nonlinear Control Design: Geometric, Adaptive and Robust (1995)
[26] Nagai H, SIAM J. Contr. Opt. 34 pp 74– (1996) · Zbl 0856.93107
[27] Pan Z, SIAM J. Contr. Opt. 37 pp 957– (1999) · Zbl 0924.93046
[28] Pan, Z, Liu, Y and Shi, S. 2002. Output feedback stabilization for stochastic nonlinear systems in observer canonical form with stable zero-dynamics. Proc. 41st IEEE Conf. Dec. Contr. 2002, Las Vegas, Nevada USA. pp.1392–1397.
[29] Runolfsson T, IEEE Trans. Automat. Contr. 39 pp 1551– (1994) · Zbl 0930.93084
[30] Sontag ED, Syst. Contr. Lett. 13 pp 117– (1989) · Zbl 0684.93063
[31] Krstić M, Stability of Nonlinear Uncertain Systems (1988)
[32] Sontag ED, European J. Contr. 1 pp 24– (1995) · Zbl 1177.93003
[33] Sontag ED, IEEE Trans. Automat. Contr. 40 pp 1476– (1995) · Zbl 0832.93047
[34] Teel, A and Praly, L. 1993. On output feedback stabilization for systems with ISS inverse dynamics and uncertainties. Proc. 32nd IEEE Conf. Dec. Contr. 1993, San Antonio, Texas. pp.1942–1947.
[35] Tsinias J, Int. J. Contr. 75 pp 907– (1998) · Zbl 0953.93073
[36] Tsinias J, Syst. Contr. Lett. 36 pp 221– (1999) · Zbl 0913.93067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.