Efficient anisotropic adaptive discretization of the cardiovascular system. (English) Zbl 1125.76046

Summary: We present an anisotropic adaptive discretization method and demonstrate how computational efficiency can be increased when applying it to the simulation of cardiovascular flow. We further propose a new adaptive approach which controls the mesh adaptation procedure to maintain structured and graded elements near the wall resulting in a more accurate wall shear stress computation. To perform mesh adaptation for hemodynamic flows, a single mesh metric field is constructed for the whole cardiac cycle. Two alternative approaches are applied, one in which a metric field is constructed based on the average flow whereas in the other approach the metric field is obtained by intersecting metric fields computed at specified instants in the cycle. We apply the method to the case of a 3D branching vessel model. The efficiency of our approach is measured by analyzing the wall shear stress, a challenging but important quantity in the understanding of cardiovascular disease. The general anisotropic adaptivity based on metric intersection achieves over an order of magnitude reduction in terms of degrees of freedom when compared to uniform refinement for a given level of accuracy.


76M10 Finite element methods applied to problems in fluid mechanics
76Z05 Physiological flows
92C35 Physiological flow
92-08 Computational methods for problems pertaining to biology
Full Text: DOI


[1] Taylor, C.A.; Hughes, T.J.R.; Zarins, C.K., Finite element modeling of blood flow in arteries, Comput. methods appl. mech. engrg., 158, 155-196, (1998) · Zbl 0953.76058
[2] Li, X.; Shephard, M.S.; Beall, M.W., 3D anisotropic mesh adaptation by mesh modifications, Comput. methods appl. mech. engrg., 194, 4915-4950, (2005) · Zbl 1090.76060
[3] Almeida, R.C.; Feijóo, R.A.; Galeão, A.C.; Padra, C.; Silva, R.S., Adaptive finite element computational fluid dynamics using an anisotropic error estimator, Comput. methods appl. mech. engrg., 182, 379-400, (2000) · Zbl 0986.76035
[4] Buscaglia, G.C.; Dari, E.A., Anisotropic mesh optimization and its application in adaptivity, Int. J. numer. methods engrg., 40, 4119-4136, (1997) · Zbl 0899.76264
[5] Castro-Diáz, M.J.; Hecht, F.; Mohammadi, B.; Pironneau, O., Anisotropic unstructured mesh adaption for flow simulations, Int. J. numer. methods fluids, 25, 475-491, (1997) · Zbl 0902.76057
[6] Habashi, W.G.; Dompierre, J.; Bourgault, Y.; Ait-Ali-Yahia, D.; Fortin, M.; Vallet, M.-G., Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. part I: general principles, Int. J. numer. methods fluids, 32, 725-744, (2000) · Zbl 0981.76052
[7] Frey, P.J.; Alauzet, F., Anisotropic mesh adaptation for CFD computations, Comput. methods appl. mech. engrg., 194, 5068-5082, (2005) · Zbl 1092.76054
[8] Pain, C.C.; Umpleby, A.P.; de Oliveira, C.R.E.; Goddard, A.J.H., Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations, Comput. methods appl. mech. engrg., 190, 3771-3796, (2001) · Zbl 1008.76041
[9] Remacle, J.F.; Li, X.; Shephard, M.S.; Flaherty, J.E., Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods, Int. J. numer. methods engrg., 62, 899-923, (2005) · Zbl 1078.76042
[10] Li, X.; Shephard, M.S.; Beall, M.W., Accounting for curved domains in mesh adaptation, Int. J. numer. methods engrg., 58, 247-276, (2003) · Zbl 1035.65021
[11] Garimella, R.V.; Shephard, M.S., Boundary layer mesh generation for viscous flow simulations, Int. J. numer. methods engrg., 49, 193-218, (2000) · Zbl 0960.76074
[12] Y. Ito, K. Nakahashi, Unstructured mesh generation for viscous flow computations, in: Proc. 11th International Meshing Roundtable, Ithaca, NY, USA, 2002.
[13] K.E. Jansen, M.S. Shephard, M.W. Beall, On anisotropic mesh generation and quality control in complex flow problems, in: Proc. 10th International Meshing Roundtable, Newport Beach, CA, USA, 2001.
[14] Khawaja, A.; Kallinderis, Y., Hybrid grid generation for turbomachinery and aerospace applications, Int. J. numer. methods engrg., 49, 145-166, (2000) · Zbl 0980.76073
[15] Löhner, R.; Cebral, J., Generation of non-isotropic unstructured grids via directional enrichment, Int. J. numer. methods engrg., 49, 219-232, (2000) · Zbl 0970.76058
[16] Müller, J.; Sahni, O.; Li, X.; Jansen, K.E.; Shephard, M.S.; Taylor, C.A., Anisotropic adaptive finite element method for modelling blood flow, Comput. methods biomech. biomed. engrg., 8, 295-305, (2005)
[17] Whiting, C.H.; Jansen, K.E., A stabilized finite element method for the incompressible navier – stokes equations using a hierarchical basis, Int. J. numer. methods fluids, 35, 93-116, (2001) · Zbl 0990.76048
[18] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/petrov – galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier – stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[19] I. Vignon-Clementel, A. Figueroa, K.E. Jansen, C.A. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries, Comput. Methods Appl. Mech. Engrg., in press, doi:10.1016/j.cma.2005.04.014. · Zbl 1175.76098
[20] Franca, L.P.; Frey, S., Stabilized finite element methods: II. the incompressible navier – stokes equations, Comput. methods appl. mech. engrg., 99, 209-233, (1992) · Zbl 0765.76048
[21] Hughes, T.J.R.; Franca, L.P.; Hulbert, G.M., A new finite element formulation for fluid dynamics: VIII. the Galerkin/least-squares method for advective – diffusive equations, Comput. methods appl. mech. engrg., 73, 173-189, (1989) · Zbl 0697.76100
[22] Jansen, K.E.; Whiting, C.H.; Hulbert, G.M., A generalized-α method for integrating the filtered navier – stokes equations with a stabilized finite element method, Comput. methods appl. mech. engrg., 190, 305-319, (1999) · Zbl 0973.76048
[23] F. Shakib, http://www.acusim.com.
[24] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (1987), Prentice-Hall Englewood Cliffs, NJ
[25] Hughes, T.J.R.; Engel, G.; Mazzei, L.; Larson, M.G., The continuous Galerkin method is locally conservative, J. comput. phys., 163, 467-488, (2000) · Zbl 0969.65104
[26] Gresho, P.M.; Sani, R.L., Incompressible flow and the finite element method, (1998), Wiley New York, NY · Zbl 0941.76002
[27] Ainsworth, M.; Oden, J.T., A posteriori error estimation in finite element analysis, (2000), John Wiley & Sons New York · Zbl 1008.65076
[28] Verfürth, R., A review of A posteriori error estimation and adaptive mesh-refinement techniques, (1996), Teubner-Wiley Stuttgart · Zbl 0853.65108
[29] Bänsch, E., Local refinements in 2 and 3 dimensions, Impact comput. sci. engrg., 3, 181-191, (1991) · Zbl 0744.65074
[30] de Cougny, H.L.; Shephard, M.S., Parallel refinement and coarsening of tetrahedral meshes, Int. J. numer. methods engrg., 46, 1101-1125, (1999) · Zbl 0964.76073
[31] George, P.-L.; Borouchaki, H.; Laug, P., An efficient algorithm for 3D adaptive meshing, Adv. engrg. softw., 33, 377-387, (2002) · Zbl 1055.68151
[32] P.-L. George, Tet meshing: construction, optimization and adaptation, in: Proc. 8th International Meshing Roundtable, South Lake Tao, CA, USA, 1999.
[33] X. Li, Mesh modification procedures for general 3-d non-manifold domains, Ph.D. thesis, Rensselaer Polytechnic Institute, August 2003.
[34] Kunert, G., Toward anisotropic mesh construction and error estimation in the finite element method, Numer. methods partial differential equations, 18, 625-648, (2002) · Zbl 1041.65097
[35] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland Amsterdam · Zbl 0445.73043
[36] P.J. Frey, F. Alauzet, Anisotropic mesh adaptation for transient flows simulations, in: Proc. 12th International Meshing Roundtable, Santa Fe, NM, USA, 2003. · Zbl 1092.76054
[37] Apel, T.; Dobrowolski, M., Anisotropic interpolation with applications to the finite element method, Computing, 47, 277-293, (1992) · Zbl 0746.65077
[38] Formaggia, L.; Perotto, S., New anisotropic a priori error estimates, Numer. math., 89, 641-667, (2001) · Zbl 0990.65125
[39] Borouchaki, H.; George, P.-L.; Mohammadi, B., Delaunay mesh generation governed by metric specifications. part II. applications, Finite elem. anal. des., 25, 85-109, (1997) · Zbl 0897.65077
[40] Kallinderis, Y.; Kavouklis, C., A dynamic adaptation scheme for general 3-D hybrid meshes, Comput. methods appl. mech. engrg., 194, 5019-5050, (2005) · Zbl 1092.76037
[41] R.V. Garimella, Anisotropic tetrahedral mesh generation, Ph.D. thesis, Rensselaer Polytechnic Institute, May 1999.
[42] White, F.M., Viscous fluid flow, (1974), McGraw-Hill New York · Zbl 0356.76003
[43] Womersley, J., Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, J. physiol. (London), 127, 553-563, (1955)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.