×

zbMATH — the first resource for mathematics

On synchronization of unified chaotic systems via nonlinear control. (English) Zbl 1125.93469
Summary: A simple but efficient nonlinear control method is applied to the synchronization of unified chaotic systems using the Lyapunov method. A numerical example is given to illuminate the design procedure and advantage of the result derived.

MSC:
93D21 Adaptive or robust stabilization
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chen, G.; Dong, X., From chaos to order, (1998), World Scientific Singapore
[2] Ott, E.; Grebogi, C.; Yorke, J.A., Controlling chaos, Phys rev lett, 64, 1196-1199, (1990) · Zbl 0964.37501
[3] Lu, H.; He, Z., Chaotic behavior in first-order autonomous continuous-time systems with delay, IEEE trans circuit syst, 43, 700-702, (1996)
[4] Chen, G., Chaos on some controllability conditions for chaotic dynamics control, Chaos, solitons & fractals, 8, 1461-1470, (1997)
[5] Pyragas, K., Continuous control of chaos by self-controlling feedback, Phys lett A, 170, 421-428, (1992)
[6] Park, J.H.; Kwon, O.M., LMI optimization approach to stabilization of time-delay chaotic systems, Chaos, solitons & fractals, 23, 445-450, (2005) · Zbl 1061.93509
[7] Park, J.H., Controlling chaotic systems via nonlinear feedback control, Chaos, solitons & fractals, 23, 1049-1054, (2005) · Zbl 1061.93508
[8] Hwang, C.C.; Hsieh, J.Y.; Lin, R.S., A linear continuous feedback control of chua’s circuit, Chaos, solitons & fractals, 8, 1507-1515, (1997)
[9] Lu, J.H.; Lu, J.A., Controlling uncertain Lü system using linear feedback, Chaos, solitons & fractals, 17, 127-133, (2003) · Zbl 1039.37019
[10] Pecora, L.M.; Carroll, T.L., Synchronization in chaotic systems, Phys rev lett, 64, 821-824, (1990) · Zbl 0938.37019
[11] Carroll, T.L.; Pecora, L.M., Synchronizing chaotic circuits, IEEE trans circ syst I, 38, 453-456, (1991)
[12] Chua, L.O.; Itah, M.; Kosarev, L.; Eckert, K., Chaos synchronization in chua’s circuits, J circuits syst comput, 3, 93-108, (1993)
[13] Chen, M.; Han, Z., Controlling and synchronizing chaotic Genesio system via nonlinear feedback control, Chaos, solitons & fractals, 17, 709-716, (2003) · Zbl 1044.93026
[14] Lü, J.; Chen, G.; Cheng, D.; Celikovsky, S., Bridge the gap between the Lorenz system and the Chen system, Int J bifurc chaos, 12, 2917-2926, (2002) · Zbl 1043.37026
[15] Lu, J.; Wu, X.; Lü, J., Synchronization of a unified chaotic system and the application in secure communication, Phys lett A, 305, 365-370, (2002) · Zbl 1005.37012
[16] Wu, X.; Lu, J., Parameter identification and backstepping control of uncertain LLü system, Chaos, solitons & fractals, 18, 721-729, (2003) · Zbl 1068.93019
[17] Li, D.; Lu, J.A.; Wu, X., Linearly coupled synchronization of the unified chaotic systems and the Lorenz systems, Chaos, solitons & fractals, 23, 79-85, (2005) · Zbl 1063.37030
[18] Lü, J.; Zhou, T.; Zhang, S., Chaos synchronization between linearly coupled chaotic systems, Chaos, solitons & fractals, 14, 529-541, (2002) · Zbl 1067.37043
[19] Park, J.H., Stability criterion for synchronization of linearly coupled unified chaotic systems, Chaos, solitons & fractals, 23, 1319-1325, (2005) · Zbl 1080.37035
[20] Chen, H.K., Global chaos synchronization of new chaotic systems via nonlinear control, Chaos, solitons & fractals, 23, 1245-1251, (2005) · Zbl 1102.37302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.