×

Feedback and adaptive synchronization of chaotic Lü system. (English) Zbl 1125.93473

Summary: This paper treats chaos synchronization problem of chaotic Lü system. Two control approaches via a single variable are investigated, namely a linear feedback control and adaptive control. Based on Lyapunov stability theory, control laws are derived such that the two identical Lü systems are to be synchronized. In both cases sufficient conditions for the synchronization are obtained analytically. Numerical simulations are shown to verify the results.

MSC:

93D21 Adaptive or robust stabilization
37N35 Dynamical systems in control
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Jiang, G-.P.; Chen, G.; Tang, K.S., A new criterion for chaos synchronization using linear state feedback control, Int. J. bifurcat. chaos, 13, 8, 2343, (2002) · Zbl 1064.37515
[2] Agiza, H.N.; Yassen, M.T., Synchronization of rossler and Chen chaotic dynamical systems using active control, Phys. lett. A, 278, 191, (2001) · Zbl 0972.37019
[3] Huang, L.; Feng, R.; Wang, M., Synchronization of chaotic systems via nonlinear control, Phys. lett. A, 320, 271, (2004) · Zbl 1065.93028
[4] Liao, T.-L., Adaptive synchronization of two Lorenz systems, Chaos, solitons & fractals, 9, 1555, (1998) · Zbl 1047.37502
[5] Liao, T.-L.; Lin, S.-H., Adaptive control and synchronization of Lorenz systems, J. franklin inst., 336, 925, (1999) · Zbl 1051.93514
[6] Liao, T.-L.; Tsai, S.-H., Adaptive synchronization of chaotic systems and it’s application to secure communications, Chaos, solitons & fractals, 11, 1387, (2000) · Zbl 0967.93059
[7] Li, Z.; Han, C.; Shi, S., Modification for synchronization of rossler and Chen chaotic systems, Phys. lett. A, 301, 224, (2002) · Zbl 0997.37014
[8] Wang, Y.; Guan, Z.-H.; Wen, X., Adaptive synchronization for Chen chaotic system with fully unknown parameters, Chaos, solitons & fractals, 19, 899, (2004) · Zbl 1053.37528
[9] Wang, Y.; Guan, Z.-H.; Wang, H.O., Feedback and adaptive control for the synchronization of Chen system via a single variable, Phys. lett. A, 312, 34, (2003) · Zbl 1024.37053
[10] Yassen, M.T., Adaptive control and synchronization of a modified chua’s circuit system, Appl. math. comput., 135, 1119, (2001)
[11] Lorenz, E.N., Deterministic non-periodic flows, J. atmos. sci., 20, 130, (1963)
[12] Stewart, I., The Lorenz attractor exists, Nature, 406, 948, (2000)
[13] Chen, G.; Ueta, T., Yet another chaotic attractor, Int. J. bifurcat. chaos, 9, 1465, (1999) · Zbl 0962.37013
[14] Vanêĉek, A.; Ĉelikovskŷ, S., Control systems: from linear analysis to synthesis of chaos, (1996), Prentice-Hall London · Zbl 0874.93006
[15] Lü, J.; Chen, G., A new chaotic attractor coined, Int. J. bifurcat. chaos, 12, 659, (2002) · Zbl 1063.34510
[16] Lü, J.; Chen, G.; Zhang, S., Dynamical analysis of a new chaotic attractor, Int. J. bifurcat. chaos, 12, 1001, (2002) · Zbl 1044.37021
[17] Lü, J.; Chen, G.; Zhang, S., The compound structure of a new chaotic attractor, Chaos, solitons & fractals, 14, 669, (2002) · Zbl 1067.37042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.