×

The unilateral frictionless contact of a piezoelectric body with a rigid support. (English) Zbl 1126.74392

Summary: The problem of a piezoelectric body in unilateral frictionless contact with a rigid support is considered. The governing equations of this problem are presented. Two variational formulations are proposed and employed in order to decouple the linear problem of the electroelastic equilibrium of the piezoelectric body from the nonlinear contact problem, via a condensation procedure.
Two different numerical approaches based on finite-element discretizations of the two variational principles are presented in order to show the effectiveness of the proposed formulations. To this end, ad hoc piezoelectric finite elements are used. A comparison between the results obtained by the two different approaches is made.

MSC:

74F15 Electromagnetic effects in solid mechanics
74A55 Theories of friction (tribology)
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Signorini, A., Sopra alcune questioni di elastostatica, () · JFM 59.1413.02
[2] Gurtin, M.E., The linear theory of elasticity, () · Zbl 0123.40803
[3] Duvaut, G.; Lions, J.L., LES inéquations en Mécanique et en physique, (1972), Dunod Paris · Zbl 0298.73001
[4] Gladwell, G.M.L., Contact problems in the classical theory of elasticity, (1980), Sijthoff & Noordhoff, Alphen aan den Rijin The Netherlands · Zbl 0431.73094
[5] Panagiotopoulos, P.D., Inequality problems in mechanics and applications, (1985), Birkhäuser Verlag Boston · Zbl 0579.73014
[6] ()
[7] Landau, L.D.; Lifshitz, E.M., Electrodynamics of continuous media, () · Zbl 0122.45002
[8] Ikeda, T., Fundamentals of piezoelectricity, (1990), Oxford University Press Oxford
[9] Eringen, A.C.; Maugin, G.A., Electrodynamics of continua, (1990), Springer-Verlag Berlin
[10] Kikuchi, N.; Oden, J.T., Contact problems in elasticity: A study of variational inequalities and finite element methods, (1988), SIAM Philadelphia, PA · Zbl 0685.73002
[11] Aubin, J.P., Applied functional analysis, (1979), John Wiley & Sons New York
[12] P. Bisegna and F. Maceri, Polarization fields in the variational analysis of the linear piezoelectric problems, (submitted). · Zbl 1288.74021
[13] Kellogg, O.D., Foundations of potential theory, (1967), Springer-Verlag Berlin · Zbl 0152.31301
[14] Lions, J.L.; Stampacchia, G., Variational inequalities, Pure appl. math., 20, 493-519, (1967) · Zbl 0152.34601
[15] Fichera, G., Boundary value problems of elasticity with unilateral constraints, ()
[16] Ekeland, I.; Temam, R., Convex analysis and variational problems, (1976), North-Holland Amsterdam
[17] Fichera, G., Sul problema elastostatico di Signorini con ambigues condizioni al contorno, Atti acc. nazionale lincei, S VIII, 34, (1963) · Zbl 0128.18305
[18] Toscano, R.; Maceri, A., Sul problema delia trave su suolo elastico unilaterale, Bollettino U.M.I., 17-B, 352-372, (1980) · Zbl 0443.73098
[19] Glowinski, R.; Lions, J.L.; Trémolières, R., Numerical analysis of variational inequalities, (1981), North-Holland Amsterdam · Zbl 0508.65029
[20] Tiersten, H.F., Linear piezoelectric plate vibrations, (1969), Plenum Press New York · Zbl 0534.73083
[21] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods, (1991), Springer-Verlag Berlin · Zbl 0788.73002
[22] Luciano, R.; Sacco, E., Stress-penalty method for unilateral contact problems. mathematical formulation and computational aspects, Eur. J. mech., A/solids, 13, 93-111, (1994) · Zbl 0809.73059
[23] Zangwill, W.I., Nonlinear programming. A unified approach, (1969), Prentice Hall Englewood Cliffs, NJ · Zbl 0191.49101
[24] Mangasarian, O.L., Nonlinear programming, (1969), McGraw-Hill New York · Zbl 0194.20201
[25] Luenberger, D.G., Introduction to linear and nonlinear programming, (1973), Addison-Wesley Reading, MA · Zbl 0241.90052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.