×

zbMATH — the first resource for mathematics

Vectorial form of Ekeland-type variational principle with applications to vector equilibrium problems and fixed point theory. (English) Zbl 1127.49015
Summary: This paper introduces a vectorial form of equilibrium version of Ekeland-type variational principle. Some equivalent results to our variational principle are given. As applications, we derive the existence of solutions of a vector equilibrium problem in the setting of complete quasi-metric spaces with a \(W\)-distance. Caristi-Kirk fixed point theorem for multivalued maps is also established in a more general setting.

MSC:
49J53 Set-valued and variational analysis
49J27 Existence theories for problems in abstract spaces
47H10 Fixed-point theorems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ansari, Q.H., Vector equilibrium problems and vector variational inequalities, (), 1-16 · Zbl 1198.90343
[2] Ansari, Q.H.; Konnov, I.V.; Yao, J.C., Existence of a solution and variational principles for vector equilibrium problems, J. optim. theory appl., 110, 3, 481-492, (2001) · Zbl 0988.49004
[3] Ansari, Q.H.; Konnov, I.V.; Yao, J.C., Characterizations of solutions for vector equilibrium problems, J. optim. theory appl., 113, 3, 435-447, (2002) · Zbl 1012.90055
[4] Aubin, J.-P., Mathematical methods of game and economic theory, (1979), North-Holland Amsterdam · Zbl 0452.90093
[5] Aubin, J.-P.; Ekeland, I., Applied nonlinear analysis, (1984), Wiley New York
[6] Aubin, J.-P.; Frankowska, H., Set-valued analysis, (1990), Birkhäuser Boston
[7] Bianchi, M.; Hadjisavvas, N.; Schaible, S., Vector equilibrium problems with generalized monotone bifunctions, J. optim. theory appl., 92, 527-542, (1997) · Zbl 0878.49007
[8] Bianchi, M.; Kassay, G.; Pini, R., Existence of equilibria via Ekeland’s principle, J. math. anal. appl., 305, 502-512, (2005) · Zbl 1061.49005
[9] Blum, E.; Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. student, 63, 1-4, 123-145, (1994) · Zbl 0888.49007
[10] Caristi, J.; Kirk, W.A., Geometric fixed point theory and inwardness conditions, (), 74-83
[11] Chen, G.Y.; Huang, X.X., Stability results for Ekeland’s &z.epsiv; variational principle for vector valued functions, Math. methods oper. res., 48, 97-103, (1998) · Zbl 0941.49011
[12] Chen, G.Y.; Huang, X.X., Ekeland’s &z.epsiv;-variational principle for set-valued mappings, Math. methods oper. res., 48, 181-186, (1998) · Zbl 0936.49012
[13] Chen, G.Y.; Yang, X.Q.; Yu, H., A nonlinear scalarization function and generalized quasi-vector equilibrium problems, J. global optim., 32, 451-466, (2005) · Zbl 1130.90413
[14] Ekeland, I., Sur LES probléms variationnels, C. R. acad. sci. Paris, 275, 1057-1059, (1972) · Zbl 0249.49004
[15] Ekeland, I., On the variational principle, J. math. anal. appl., 47, 324-353, (1974) · Zbl 0286.49015
[16] Ekeland, I., On convex minimization problems, Bull. amer. math. soc. (N.S.), 1, 3, 445-474, (1979)
[17] Facchinei, F.; Pang, J.-S., Finite dimensional variational inequalities and complementarity problems, I, (2003), Springer-Verlag New York · Zbl 1062.90001
[18] Feng, Y.Q.; Liu, S.Y., Fixed point theorems for multivalued contractive mappings and multi-valued Caristi type mappings, J. math. anal. appl., 317, 103-112, (2006) · Zbl 1094.47049
[19] Flores-Bazán, F., Existence theory for finite-dimensional pseudomonotone equilibrium problems, Acta appl. math., 77, 249-297, (2003) · Zbl 1053.90110
[20] Gerth (Tammer), Chr.; Weidner, P., Nonconvex separation theorems and some applications in vector optimization, J. optim. theory appl., 67, 297-320, (1990) · Zbl 0692.90063
[21] Giannessi, F., Theorems of the alternative, quadratic programs and complementarity problems, (), 151-186 · Zbl 0484.90081
[22] ()
[23] Göpfert, A.; Tammer, Chr.; Riahi, H.; Zălinescu, C., Variational methods in partially ordered spaces, (2003), Springer-Verlag New York
[24] Göpfert, A.; Tammer, Chr.; Zălinescu, C., On the vectorial Ekeland’s variational principle and minimal points in product spaces, Nonlinear anal., 39, 909-922, (2000) · Zbl 0997.49019
[25] Kada, O.; Suzuki, T.; Takahashi, W., Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. japonica, 44, 2, 381-391, (1996) · Zbl 0897.54029
[26] Lin, L.J., Existence results for primal and dual generalized vector equilibrium problems with applications to generalized semi-infinite programming, J. global optim., 33, 579-595, (2005) · Zbl 1097.90069
[27] Luc, T.D., Theory of vector optimization, Lecture notes in econom. and math. systems, vol. 319, (1989), Springer-Verlag Berlin
[28] Oettli, W.; Théra, M., Equivalents of Ekeland’s principle, Bull. austral. math. soc., 48, 385-392, (1993) · Zbl 0793.54025
[29] Park, S., On generalizations of the Ekeland-type variational principles, Nonlinear anal., 39, 881-889, (2000) · Zbl 1044.49500
[30] Takahashi, W., Nonlinear functional analysis, (2000), Yokohama Yokohama, Japan
[31] Tammer, Chr., A generalization of Ekeland’s variational principle, Optimization, 25, 129-141, (1992) · Zbl 0817.90098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.