An error analysis for radial basis function interpolation. (English) Zbl 1128.41002

Summary: Radial basis function interpolation refers to a method of interpolation which writes the interpolant to some given data as a linear combination of the translates of a single function \(\varphi\) and a low degree polynomial. We develop an error analysis which works well when the Fourier transform of \(\varphi\) has a pole of order \(2m\) at the origin and a zero at \(\infty\) of order \(2\kappa\). In case \(0\leq m \leq \kappa\), we derive error estimates which fill in some gaps in the known theory; while in case \(m>\kappa\) we obtain previously unknown error estimates. In this latter case, we employ dilates of the function \(\varphi\), where the dilation factor corresponds to the fill distance between the data points and the domain.


41A05 Interpolation in approximation theory
41A25 Rate of convergence, degree of approximation
65D05 Numerical interpolation
41A63 Multidimensional problems
Full Text: DOI


[1] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, 1970 · Zbl 0171.38503
[2] Bezhaev, A.Y., Vasilenko, V.A.: Variational theory of splines. Kluwer Academic/Plenum Publishers, New York, 2001 · Zbl 0979.41007
[3] Brownlee, R., Light, W.: Approximation orders for interpolation by surface splines to rough functions. IMA J. Numer. Anal. To appear · Zbl 1084.41003
[4] Duchon, J.: Splines minimizing rotation-invariant seminorms in Sobolev spaces. Constructive Theory of Functions of Several Variables, Lecture Notes in Mathematics 571 W. Schempp, K. Zeller, (eds.), Springer-Verlag, Berlin, 1977, pp. 85-100
[5] Duchon, J.: Sur l?erreur d?interpolation des fonctions de plusieur variables par les Dm-splines. RAIRO Analyse Numerique 12, 325-334 (1978) · Zbl 0403.41003
[6] von Golitschek, M., Light, W.: Interpolation by polynomials and radial basis functions on spheres. Constr. Approx. 17, 1-18 (2001) · Zbl 0983.41002
[7] Johnson, M.J.: Overcoming the boundary effects in surface spline interpolation. IMA J. Numer. Anal. 20, 405-422 (2000) · Zbl 0962.65009
[8] Light, W., Wayne, H.: On power functions and error estimates for radial basis function interpolation. J. Approx. Th. 92, 245-266 (1998) · Zbl 0895.41013
[9] Light, W., Wayne, H.: Spaces of distributions, interpolation by translates of a basis function and error estimates. Numer. Math. 81, 415-450 (1999) · Zbl 0918.65007
[10] Madych, W., Nelson, S.: Multivariate interpolation and conditionally positive definite functions II. Math. Comp. 54, 211-230 (1990) · Zbl 0859.41004
[11] Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2, 11-22 (1986) · Zbl 0625.41005
[12] Narcowich, F.J., Ward, J.D.: Scattered-data interpolation on Error estimates for radial basis and band-limited functions. Manuscript · Zbl 1081.41014
[13] Wendland, H.: Sobolev-type error estimates for interpolation by radial basis functions. Surface Fitting and Multiresolution Methods, A. LeMéhauté, C. Rabut, L.L. Schumaker, (eds.), Vanderbilt University Press, Nashville, Tenessee USA, 1997, pp. 337-344 · Zbl 0955.41002
[14] Wu, Z., Schaback, R.: Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 13, 13-27 (1993) · Zbl 0762.41006
[15] Yoon, J.: Lp-error estimates for ?shifted? surface spline interpolation on Sobolev space. Math. Comp. 72, 1349-1367 (2003) · Zbl 1017.41003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.