zbMATH — the first resource for mathematics

The influence of cutting force on surface machining quality. (English) Zbl 1128.90367
Summary: Appropriately controlled cutting forces can contribute not only to the safety and efficiency of machining but also to the quality of machined surfaces. It is even more important when hardened material is cut. The correlation between the cutting force and the surface quality in ball-end milling operations has been investigated by machining P20 steel (HRC 30) work-pieces using solid carbide ball-end cutters. Plane surfaces with different depth of cut were machined using two different cutting strategies. The first strategy cut the test-piece using a cutting force model, whereas the other machined with a feed rate optimization product, which uses the removal rate as an analogue of cutting force to control the feed rate. The test results show that constant surface quality is possible when the cutting forces are controlled through feed rate adjustment. Conversely, a desired surface quality can also be maintained by controlling the cutting force in a predetermined manner.
90B30 Production models
Full Text: DOI
[1] DOI: 10.1115/1.2901948 · doi:10.1115/1.2901948
[2] Bergs T, Trans. NAMRI/SME (1996)
[3] DOI: 10.1016/S0890-6955(02)00265-1 · doi:10.1016/S0890-6955(02)00265-1
[4] DOI: 10.1016/S0007-8506(07)60859-2 · doi:10.1016/S0007-8506(07)60859-2
[5] Devor, RE, Kline, WA and Zdeblick, WJ. Mechanistic model for the force system in end milling with application to machining airframe structures. Proceedings of the 8th North American Manufacturing Research Conference. pp.297–303. (Rolla, Missouri)
[6] DOI: 10.1115/1.1334864 · doi:10.1115/1.1334864
[7] DOI: 10.1016/0890-6955(94)90052-3 · doi:10.1016/0890-6955(94)90052-3
[8] Gadalla, M and Elmaraghy, WH. 1999.Bridging the gap between tool path generation for sculptured surface machining and computer aided process modelling techniques, 129–137. Kluwer Academic Publishers.
[9] DOI: 10.1016/S0890-6955(99)00040-1 · doi:10.1016/S0890-6955(99)00040-1
[10] DOI: 10.1016/0020-7357(82)90016-6 · doi:10.1016/0020-7357(82)90016-6
[11] DOI: 10.1016/0890-6955(95)00081-X · doi:10.1016/0890-6955(95)00081-X
[12] DOI: 10.1016/0890-6955(94)00115-Z · doi:10.1016/0890-6955(94)00115-Z
[13] Martelloti ME, Trans. ASME 63 pp 677– (1944)
[14] Martelloti ME, Trans. ASME 67 pp 233– (1945)
[15] DOI: 10.1063/1.1707586 · doi:10.1063/1.1707586
[16] Sabberwal AJP, Ann. CIRP 8 pp 197– (1960)
[17] DOI: 10.1016/S0924-0136(00)00803-7 · doi:10.1016/S0924-0136(00)00803-7
[18] DOI: 10.1016/S0007-8506(07)63244-2 · doi:10.1016/S0007-8506(07)63244-2
[19] DOI: 10.1016/0890-6955(91)90050-D · doi:10.1016/0890-6955(91)90050-D
[20] DOI: 10.1016/S0890-6955(00)00097-3 · doi:10.1016/S0890-6955(00)00097-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.