Xie, Fuding; Ji, Min; Zhao, Hong Some solutions of discrete sine-Gordon equation. (English) Zbl 1129.35456 Chaos Solitons Fractals 33, No. 5, 1791-1795 (2007). Summary: In this paper, a series of exact solutions of discrete sine-Gordon equation are obtained by the different transformations and symbolic computation. Cited in 9 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 39A10 Additive difference equations PDF BibTeX XML Cite \textit{F. Xie} et al., Chaos Solitons Fractals 33, No. 5, 1791--1795 (2007; Zbl 1129.35456) Full Text: DOI OpenURL References: [1] Ablowitz, M.J.; Clarkson, P.A., Soliton, nonlinear evolution equations and inverse scattering, (1991), Cambridge University Press New York · Zbl 0762.35001 [2] Toda, M.; Wadati, M.; Toda, M., Theory of nonlinear lattices, J phys soc jpn, 39, 1204, (1989), Springer-Verlag Berlin, Heidelberg [3] Wadati, M.; Toda, M.; Wadati, M.; Wadati, M.; Wadati, M.; Watanabe, M., J phys soc jpn, Prog theor phys suppl, J phys soc jpn, Prog theor phys, 57, 808, (1977) [4] Shabat, A.B.; Yamilov, R.I., Phys lett A, 227, 15, (1997) · Zbl 0962.37509 [5] Baldwin, D.; Göktas, Ü.; Hereman, W., Comput phys commun, 162, 203, (2004) [6] Levi, D.; Yamilov, R.I., J math phys, 38, 6648, (1997) [7] Adler, V.E.; Shabat, A.B.; Yamilov, R.I., Theor math phys, 125, 1603, (2000) [8] Cherdantsev, I.Yu.; Yamilov, R.I., Phys D, 87, 140, (1995) [9] Hu, X.B.; Ma, W.X., Phys lett A, 293, 161, (2002) [10] Ablowtiz, M.J.; Ladik, J.F., J math phys, 16, 598, (1975) [11] Wattis, J., Physica D, 82, 333, (1995) [12] Liu, S.K.; Fu, Z.; Liu, S.D., Phys lett A, 351, 59, (2006) [13] Wazwaz, A.M., Phys lett A, 350, 367, (2006) [14] Xie, F.D.; Wang, J.Q., Chaos, solitons & fractals, 27, 1067, (2006) [15] Xie, F.D., Commun theor phys (Beijing, China), 44, 293, (2005) [16] Xie, F.D.; Ji, M.; Gong, L., Commun theor phys (Beijing, China), 45, 36, (2006) [17] Pilloni, L.; Levi, D., Phys lett, 92A, 5, (1982) [18] Orfanidis, S.J., Phys rev, 18D, 3828, (1978) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.