zbMATH — the first resource for mathematics

Coprime factors reduction methods for linear parameter varying and uncertain systems. (English) Zbl 1129.93352
Summary: We present a generalization of the coprime factors model reduction method of Meyer and propose a balanced truncation reduction algorithm for a class of systems containing linear parameter varying and uncertain system models. A complete derivation of coprime factorizations for this class of systems is also given. The reduction method proposed is thus applicable to linear parameter varying and uncertain system realizations that do not satisfy the structured \(\ell _{2}\)-induced stability constraint required in the standard nonfactored case. Reduction error bounds in the \(\ell _{2}\)-induced norm of the factorized mapping are given.

93B25 Algebraic methods
93C41 Control/observation systems with incomplete information
PDF BibTeX Cite
Full Text: DOI
[1] Al-Saggaf, U.M.; Franklin, G.F., An error-bound for a discrete reduced-order model of a linear multivariable system, IEEE trans. automat. control, 32, 815-819, (1987) · Zbl 0622.93021
[2] L. Andersson, A. Rantzer, C.L. Beck, Model comparison and simplification using IQCS, Internat. J. Robust Nonlinear Control 9(2) (1999) 157-181. · Zbl 0935.93020
[3] D’Andrea, R., Linear matrix inequalities, multidimensional system optimization, and control of spatially distributed systems: an example, (), 2713-2717
[4] R. D’Andrea, MD Toolbox, 1999. Available via: \(\langle\)http://www.mae.cornell.edu/raff⟩.
[5] D’Andrea, R.; Dullerud, G.E., Distributed control design for spatially interconnected systems, IEEE trans. automat. control, 48, 9, 1478-1495, (2003) · Zbl 1364.93206
[6] D’Andrea, R.; Khatri, S., Kalman decomposition of linear fractional transformation representations and minimality, (), 3557-3561
[7] Beck, C.L.; Bendotti, P., Model reduction methods for unstable uncertain system, (), 3298-3303
[8] Beck, C.L.; Doyle, J., Model reduction of behavioral systems, (), 3652-3657
[9] Beck, C.L.; Doyle, J.C.; Glover, K., Model reduction of multi-dimensional and uncertain systems, IEEE trans. automat. control, 41, 1466-1477, (1996) · Zbl 0862.93009
[10] Belcastro, C.; Lim, K.B.; Morelli, E.A., Computer-aided uncertainty modeling of nonlinear parameter-dependent systems. part II: F-16 example, (), 16-23
[11] Bendotti, P.; Beck, C.L., On the role of LFT model reduction methods in robust controller synthesis for a pressurized water reactor, IEEE trans. control syst. technology, 248-257, (1999)
[12] Bose, N.K., Applied multidimensional systems theory, (1982), Van Nostrand Reinhold Company New York · Zbl 0574.93031
[13] Chen, X.; Wen, J.T., Model reduction of multidimensional positive real systems, ()
[14] Chu, Y.C.; Glover, K., Bounds of the induced norm and model reduction errors for systems with repeated scalar nonlinearities, IEEE trans. automat. control, 471-483, (1999) · Zbl 0958.93059
[15] Dullerud, G.E.; Paganini, F., A course in robust control theory: A convex approach, (2000), Springer Berlin · Zbl 0939.93001
[16] D.F. Enns, Model Reduction for Control System Design, Ph.D. Thesis, Stanford University, 1984.
[17] Fen, W., Induced \(\ell_2\) norm model reduction of polytopic uncertain linear systems, Automatica, 1417-1426, (1996) · Zbl 0873.93018
[18] Gahinet, P.; Nemirovskii, A.; Laub, A.J.; Chilali, M., The LMI control toolbox, (1995), The MathWorks Inc.
[19] Georgiou, T.; Smith, M.C., Optimal robustness in the gap metric, IEEE trans. automat. control, 673-685, (1990) · Zbl 0800.93289
[20] Glover, K., All optimal Hankel-norm approximations of linear multivariable systems and their \(L_\infty\)-error bounds, Internat. J. control, 1115-1193, (1984) · Zbl 0543.93036
[21] Hassibi, A.; How, J.; Boyd, S., Path-following method for solving BMI problems in control, (), 1385-1389
[22] A. Helmersson, Methods for robust gain scheduling, Ph.D. Thesis, Linkoping University, December 1995.
[23] Hinrichsen, D.; Pritchard, A.J., An improved error estimate for reduced-order models of discrete-time system, IEEE trans. automat. control, 317-320, (1990) · Zbl 0702.93020
[24] Laub, A.; Heath, M.; Paige, C.; Ward, R., Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms, IEEE trans. automat. control, 115-122, (1987) · Zbl 0624.93025
[25] Li, L.; Paganini, F., LMI approach to structured model reduction via coprime factorizations, (), 1174-1179
[26] Lu, W.-M.; Zhou, K.; Doyle, J.C., Stabilization of uncertain linear systems: an LFT approach, IEEE trans. automat. control, 41, 50-65, (1996) · Zbl 0845.93068
[27] McFarlane, D.C.; Glover, K., Robust controller design using normalized coprime factor plant descriptions, () · Zbl 0688.93044
[28] Megretski, A.; Treil, S., S-procedure and power distribution inequalities: a new method in optimization and robustness of uncertain systems, (1991), Mittag-Leffler Institute
[29] Meyer, D.G., A fractional approach to model reduction, ()
[30] Moore, B.C., Principal component analysis of linear systems: controllability, observability and model reduction, IEEE trans. automat. control, 17-32, (1981) · Zbl 0464.93022
[31] Nett, C.N.; Jacobson, C.A.; Balas, M.J., A connection between state-space and doubly coprime fractional representation, IEEE trans. automat. control, 29, 9, 831-832, (1984) · Zbl 0542.93014
[32] Packard, A., Gain scheduling via linear fractional transformations, Syst. control lett., 79-92, (1994) · Zbl 0792.93043
[33] Paganini, F.; D’Andrea, R.; Doyle, J., Behavioral approach to robustness analysis, (), 2782-2786
[34] Pernebo, L.; Silvermnan, L., Model reduction via balanced state space representations, IEEE trans. automat. control, 382-387, (1982) · Zbl 0482.93024
[35] Russell, E.L.; Braatz, R.D., Model reduction for the robustness margin computation of large scale uncertain systems, Comput. chem. eng., 22, 913-926, (1998)
[36] Safonov, M.G.; Chiang, R.Y., A Schur method for balanced truncation model reduction, IEEE trans. automat. control, 34, 7, 729-733, (1989) · Zbl 0687.93027
[37] Scorletti, G.; El Ghaoui, L., Improved LMI conditions for gain scheduling and related control problems, Internat. J. robust nonlinear control, 845-877, (1998) · Zbl 0935.93050
[38] Shamma, J., Robust stability with time-varying structured uncertainty, IEEE trans. automat. control, 39, (1994) · Zbl 0807.93048
[39] S. Sivakumar, Model reduction of multi-dimensional systems, M.S. Thesis, University of Illinois at Urbana-Champaign, 2004, Toolbox available at: \(\langle\)http://scowl.ge.uiuc.edu/\(\sim\)ssivakum/research.html⟩.
[40] J. Sturm, SeDuMi, Version 1.05, 2002. Available from \(\langle\)http://fewcal.kub.nl/sturm/software/sedumi.html⟩.
[41] K.C. Toh, R.H. Tutuncu, M.J. Todd, SDPT3—a MATLAB software package for semidefinite-quadratic-linear programming, 2002. Available from \(\langle\)http://www.math.cmu.edu/\(\sim\)reha/sdpt3.html⟩. · Zbl 1334.90117
[42] Tuan, H.D.; Apkarian, P., Low nonconvexity-rank bilinear matrix inequalities: algorithms and applications in robust controller and structure designs, IEEE trans. automat. control, 45, 11, 2111-2117, (2000) · Zbl 0989.93036
[43] Varga, A., Efficient minimal realization procedure based on balancing, ()
[44] Varga, A.; Looye, G., Symbolic and numerical software tools for LFT-based low order uncertainty modeling, (), 1-6
[45] Vidyasagar, M., The graph metric for unstable plants and robustness estimates for feedback stability, IEEE trans. automat. control, 403-417, (1984) · Zbl 0536.93042
[46] Vinnicombe, G., Frequency domain uncertainty and the graph topology, IEEE trans. automat. control, (1993) · Zbl 0787.93076
[47] Wang, W.; Doyle, J.C.; Beck, C.L.; Glover, K., Model reduction of LFT systems, ()
[48] Wolkowicz, H.; Saigal, R.; Vandenberghe, L., Handbook of semidefinite programming, (2000), Kluwer Dordrecht
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.