zbMATH — the first resource for mathematics

On the global periodicity of some difference equations of third order. (English) Zbl 1130.39003
This paper is restricted to the equation \[ x_{n+3}=x_i f(x_j,x_k), \] where \(i,j,k\in \{n,n+1,n+2\}\) are pairwise distinct, \(f: (0,\infty)^2\to (0,\infty)^2\) is continuous, and the initial conditions are positive real numbers. The authors are interested in the periodic character of its solutions. The equation is said to be globally periodic if all sequences \(\{x_n\}\) generated by the equation are periodic. The equation is called a \(q\)-cycle if additionally \(q\) is the least common multiple of periods of those periodic sequences generated by the equation.
In this paper the authors want to detect the map \(f\) such that the equation is a \(q\)-cycle. They prove the following results: 1. The unique \(3\)-cycle is given by \(x_{n+3}=x_n\). 2. The unique \(4\)-cycle is given by \(x_{n+3}=x_n(x_{n+2}/x_{n+1})\). 3. There are two \(5\)-cycles, which are given by \(x_{n+3}=x_n(x_{n+2}/x_{n+1})^u\) and \(x_{n+3}=x_n(x_{n+2}/x_{n+1})^v\), where \(u,v\) are two roots of the quadratic equation \(z^2-z-1=0\).

39A11 Stability of difference equations (MSC2000)
Full Text: DOI
[1] DOI: 10.1016/S0022-247X(03)00272-5 · Zbl 1031.39012 · doi:10.1016/S0022-247X(03)00272-5
[2] DOI: 10.1080/10236190600949782 · Zbl 1116.39008 · doi:10.1080/10236190600949782
[3] Balibrea F., Grazer Mathematische Berichte 350 pp 15– (2006)
[4] Balibrea F., Proceedings of the Conference on Difference Equations (2005)
[5] DOI: 10.1080/10236190410001667977 · Zbl 1053.39008 · doi:10.1080/10236190410001667977
[6] DOI: 10.1080/10236190600703031 · Zbl 1127.39010 · doi:10.1080/10236190600703031
[7] DOI: 10.1007/s006050170042 · Zbl 1036.11002 · doi:10.1007/s006050170042
[8] DOI: 10.1007/s00285-006-0014-1 · Zbl 1098.92053 · doi:10.1007/s00285-006-0014-1
[9] Grove E.A., Advances in Discrete Mathematics and Applications (2005)
[10] Levine S.H., Journal of Mathematical Biology 4 pp 171– (1977) · Zbl 0391.92014 · doi:10.1007/BF00275982
[11] Lorenz H.W., Nonlinear Dynamical Economics and Chaotic Motion, 2. ed. (1993) · Zbl 0841.90036 · doi:10.1007/978-3-642-78324-1
[12] DOI: 10.1038/261459a0 · Zbl 1369.37088 · doi:10.1038/261459a0
[13] DOI: 10.1080/1023619031000061061 · Zbl 1030.39012 · doi:10.1080/1023619031000061061
[14] DOI: 10.1090/S0002-9939-00-05974-8 · Zbl 0970.39012 · doi:10.1090/S0002-9939-00-05974-8
[15] Thomas J.W., Texts in Applied Mathematics 22 (1995)
[16] Zheng Y., Differential Equations and Dynamical Systems 6 pp 319– (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.