×

zbMATH — the first resource for mathematics

Lie derivations of certain CSL algebras. (English) Zbl 1130.47055
Summary: It is shown that each Lie derivation on a reflexive algebra, whose lattice is completely distributive and commutative, can be uniquely decomposed into the sum of a derivation and a linear mapping with image in the center of the algebra.

MSC:
47L35 Nest algebras, CSL algebras
47B47 Commutators, derivations, elementary operators, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Alaminos, M. Mathieu and A. R. Villena,Symmetric amenability and Lie derivations, Mathematical Proceedings of the Cambridge Philosophical Society137 (2004), 433–439. · Zbl 1063.46033 · doi:10.1017/S0305004104007637
[2] W. Arveson,Operator algebra and invariant subspace, Annals of Mathematics100 (1974), 433–532. · Zbl 0334.46070 · doi:10.2307/1970956
[3] K. I. Beidar and M. A. Chebotar,On lie derivations of Lie ideals of prime rings, Israel Journal of Mathematics123 (2001), 131–148. · Zbl 0982.16025 · doi:10.1007/BF02784122
[4] M. BreŇ°ar,Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Transactions of the American Mathematical Society335 (1993), 525–546. · Zbl 0791.16028 · doi:10.2307/2154392
[5] W. Cheung,Lie derivations of triangular algebras, Linear and Multilinear Algebra51 (2003), 299–310. · Zbl 1060.16033 · doi:10.1080/0308108031000096993
[6] E. Christensen,Derivations of nest algebras, Mathematische Annalen229 (1977), 155–161. · Zbl 0356.46057 · doi:10.1007/BF01351601
[7] Gilfeather and R. L. Moore,Isomorphisms of certain CSL algebras, Journal of Functional Analysis67 (1986), 264–291. · Zbl 0635.47040 · doi:10.1016/0022-1236(86)90039-X
[8] D. Hadwin and J. Li,Local derivations and local automorphisms, Journal of Mathematical Analysis and Applications290 (2004), 702–714 · Zbl 1044.46040 · doi:10.1016/j.jmaa.2003.10.015
[9] P. R. Halmos,A Hilbert Space Problem Book, 2nd edn., Springer-Verlag, New York/Heideberg/Berlin, 1982.
[10] A. Hopenwasser,Complete distributivity, Proceedings of Symposia in Pure Mathematics51 (1990), 285–305. · Zbl 0741.47011
[11] B. E. Johnson,Symmetric amenability and the nonexistence of Lie and Jordan derivations, Mathematical Proceedings of the Cambridge Philosophical Society120 (1996), 455–473. · Zbl 0888.46024 · doi:10.1017/S0305004100075010
[12] M. S. Lambrou,Completely distributive lattices, Fundamenta Mathematica119 (1983), 227–240. · Zbl 0547.06005
[13] C. Laurie and W. E. Longstaff,A note on rank one operators in reflexive algebras, Proceedings of the American Mathematical Society89 (1983), 293–297. · Zbl 0539.47027 · doi:10.1090/S0002-9939-1983-0712641-2
[14] W. E. Logstaff,Strongly reflexive lattices, Journal of the London Mathematical Society11 (1975), 491–498. · Zbl 0313.47002 · doi:10.1112/jlms/s2-11.4.491
[15] W. E. Longstaff,Operators of rank one in reflexive algebras, Canadian Journal of Mathematics28 (1976), 9–23. · Zbl 0338.13021 · doi:10.4153/CJM-1976-002-5
[16] F. Lu,Jordan structure of CSL algebras, Manuscript. · Zbl 1156.47058
[17] W. S. Martindale,Lie derivations of Primitive rings, Michigan Mathematical Journal11 (1964), 183–187. · Zbl 0123.03201 · doi:10.1307/mmj/1028999091
[18] M. Mathieu and A. R. Villena,The structure of Lie derivations on C *-algebras, Journal of Functional Analysis202 (2003), 504–525. · Zbl 1032.46086 · doi:10.1016/S0022-1236(03)00077-6
[19] C. R. Miers,Lie derivations of von Neumann algebras, Duke Mathematical Journal40 (1973), 403–409. · Zbl 0264.46064 · doi:10.1215/S0012-7094-73-04032-5
[20] G. A. Swain,Lie derivations of the skew elements of prime rings with involution, Journal of Algebra184 (1996), 679–704. · Zbl 0856.16037 · doi:10.1006/jabr.1996.0281
[21] G. A. Swain and P. S. Blau,Lie derivations in prime rings with involution, Canadian Mathematical Bulletin42 (1999), 401–411. · Zbl 0938.16028 · doi:10.4153/CMB-1999-047-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.