A schistosomiasis model with mating structure and time delay. (English) Zbl 1130.92051

Summary: A system of homogeneous equations with a time delay is used to model the population dynamics of schistosomes. The model includes the parasite’s mating structure, multiple resistant schistosome strains, and biological complexity associated with the parasite’s life cycle. Invasion criteria of resistant strains and coexistence threshold conditions are derived. These results are used to explore the impact of drug treatment on resistant strain survival. Numerical simulations indicate that the dynamical behaviors of the current model are not qualitatively different from those derived from an earlier model that ignores the impact of time delays associated with the multiple stages in the parasite’s life cycle. However, quantitatively the time delays make it more likely for drug-resistant strains to invade in a parasite population.


92D40 Ecology
34K60 Qualitative investigation and simulation of models involving functional-differential equations
Full Text: DOI


[1] Basch, P.F., Schistosomes, development, reproduction, and host relations, (1991), Oxford University, Inc. New York
[2] Castillo-Chavez, C.; Huang, W.; Li, J., On the existence of stable pairing distributions, J. math. biol., 34, 413, (1996) · Zbl 0840.92017
[3] Castillo-Chavez, C.; Huang, W.; Li, J., Competitive exclusion and coexistence of multiple strains in an SIS STD model, SIAM J. appl. math., 59, 1790, (1999) · Zbl 0934.92029
[4] CDC, Schistosomiasis fact sheet, 2004. Available from: <http://www.cdc.gov/ncidod/dpd/parasites/schistosomiasis/factsht_schistosomiasis.htm/>.
[5] Cioli, D., Praziquantel: is there real resistance and are there alternatives?, Curr. opin. infect. dis., 13, 659, (2000)
[6] Cosgrove, C.L.; Southgate, V.R., Mating interactions between schistosoma mansoni and S. margrebowiei, Parasitology, 125, 233, (2002)
[7] Fallon, P.G.; Tao, L.-F.; Ismail, M.M.; Bennett, J.L., Schistosome resistance to praziquantel: fact or artifact?, Parasitol. today, 12, 316 320, (1996)
[8] Feng, Z.; Curtis, J.; Minchella, D.J., The influence of drug treatment on the maintenance of schistosome genetic diversity, J. math. biol., 43, 52, (2001) · Zbl 0986.92017
[9] Feng, Z.; Eppert, A.; Milner, F.A.; Minchella, D.J., Estimation of parameters governing the transmission dynamics of schistosomes, Appl. math. lett., 17, 1105, (2004) · Zbl 1063.92028
[10] K.P. Hadeler, Pair formation in age structured populations, in: A. Kurzhanskij, K. Sigmund (Eds.), Proc. Workshop on Selected Topics in Biomathematics, IIASA, Laxenburg, Austria, Acta Appl. Math. 14 (1989) 91. · Zbl 0667.92013
[11] Hadeler, K.P., Pair formation models with maturation period, J. math. biol., 32, 1, (1993) · Zbl 0808.92024
[12] Hadeler, K.P.; Ngoma, K., Homogeneous models for sexually transmitted diseases, Rocky mountain J. math., 20, 967, (1990) · Zbl 0733.92020
[13] Hadeler, K.P.; Waldstatter, R.; Worz-Busekros, A., Models for pair formation in bisexual populations, J. math. biol., 26, 635, (1988) · Zbl 0714.92018
[14] Ismail, M.; Botros, S.; Metwally, A.; William, S.; Farghally, A.; Tao, L.; Day, T.A.; Bennett, J.L., Resistance to praziquantel: direct evidence from schistosoma mansoni isolated from Egyptian villagers, Am. soc. trop. med. hyg., 60, 932, (1999)
[15] J.H. Pollard, Mathematical Models for The Growth of Human Populations, Chapter 7: The Two Sex Problem, Cambridge University Press, Cambridge, 1973.
[16] Tchuem Tchuenté, L.A.; Southgate, V.R.; Imbert-Establet, D.; Jourdane, J., Change of mate and mating competition between males of schistosoma intercalatum and S. mansoni, Parasitology, 110, 45, (1995)
[17] WHO, Schistosomiasis, 2004. Available from: <ttp://www.who.int/tdr/dw/schisto2004.htm/>.
[18] Xu, D.; Curtis, J.; Feng, Z.; Minchella, D.J., On the role of schistosome mating structure in the maintenance of drug resistant strains, Bull.math. biol., 67, 1207, (2005) · Zbl 1334.92436
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.