Komech, Alexander; Komech, Andrew Global attractor for a nonlinear oscillator coupled to the Klein-Gordon field. (English) Zbl 1131.35003 Arch. Ration. Mech. Anal. 185, No. 1, 105-142 (2007). The authors study long-time asymptotic behaviour for all finite energy solutions to Cauchy problem for the model of the one-dimensional \(U(1)\)-invariant \((F(e^{ - i\theta }\psi ) = e^{ - i\theta }F(\psi)\), \(\psi \in \mathbb{C}\), \(\theta \in \mathbb{R})\) nonlinear Klein-Gordon equation with nonlinearity concentrated at a single point \[ \ddot {\psi }(x,t) = {\psi }''(x,t) - m^2\psi (x,t) + \delta (x)F(\psi (0,t)),\quad \psi (x,0) = \psi _0 (x),\quad \dot {\psi }(x,0) = \pi _0 (x): \]each finite energy solution converges for \(t \to \pm \infty \) to the set of all nonlinear eigenfunctions of the form \(\psi(x)\exp (-i\omega t)\). The global attractor for all finite energy solutions is considered. In particular it is proved that for a U(1)-invariant dispersive Hamiltonian system the global attractor is finite-dimensional and is formed by solitary waves which are finite energy solutions of the type \(\psi_\omega(x,t)=\psi_\omega(x)e^{i\omega t}\), \(\omega\in\mathbb{C}\). It is shown that the global attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersive radiation. Reviewer: Boris V. Loginov (Ul’yanovsk) Cited in 19 Documents MSC: 35B41 Attractors 35Q40 PDEs in connection with quantum mechanics 81T10 Model quantum field theories 37L30 Attractors and their dimensions, Lyapunov exponents for infinite-dimensional dissipative dynamical systems 35B40 Asymptotic behavior of solutions to PDEs 37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems Keywords:one-dimensional \(U(1)\)-invariant nonlinear Klein-Gordon equation; long-time asymptotic behaviour; U(1)-invariant dispersive Hamiltonian system; solitary waves; continuous spectrum; dispersive radiation PDF BibTeX XML Cite \textit{A. Komech} and \textit{A. Komech}, Arch. Ration. Mech. Anal. 185, No. 1, 105--142 (2007; Zbl 1131.35003) Full Text: DOI arXiv OpenURL References: [1] Berestycki, H.; Lions, P.-L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., 82, 313-345, (1983) · Zbl 0533.35029 [2] Berestycki, H.; Lions, P.-L., Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Ration. Mech. Anal., 82, 347-375, (1983) · Zbl 0556.35046 [3] Brezis, H.; Lieb, E. H., Minimum action solutions of some ector field equations, Comm. Math. Phys., 96, 97-113, (1984) · Zbl 0579.35025 [4] Bohr, N., On the constitution of atoms and molecules, Phil. Mag., 26, 1-25, (1913) · JFM 44.0897.01 [5] Buslaev, V. S.; Perel, G. S., Scattering for the nonlinear Schrödinger equation: states that are close to a soliton, St. Petersburg Math. J., 4, 1111-1142, (1993) [6] Buslaev, V.S., Perelprimeman, G.S.: On the stability of solitary waves for nonlinear Schrödinger equations. Nonlinear Evolution Equations, Volume 164 of Amer. Math. Soc. Transl. Ser. 2, 75-98. Amer. Math. Soc., Providence, RI, 1995 [7] Buslaev, V. S.; Sulem, C., On asymptotic stability of solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20, 419-475, (2003) · Zbl 1028.35139 [8] Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations, Volume 25 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1992 · Zbl 0778.58002 [9] Cuccagna, S.: Asymptotic stability of the ground states of the nonlinear Schrödinger equation. Rend. Istit. Mat. Univ. Trieste 32, 105-118 (2002) (2001) · Zbl 1006.35088 [10] Cuccagna, S., Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 54, 1110-1145, (2001) · Zbl 1031.35129 [11] Cuccagna, S., On asymptotic stability of ground states of NLS, Rev. Math. Phys., 15, 877-903, (2003) · Zbl 1084.35089 [12] Cazenave, T.; Vázquez, L., Existence of localized solutions for a classical nonlinear Dirac field, Comm. Math. Phys., 105, 35-47, (1986) · Zbl 0596.35117 [13] Esteban, M. J.; Georgiev, V.; Séré, E., Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations, Calc. Var. Partial Differential Equations, 4, 265-281, (1996) · Zbl 0869.35105 [14] Esteban, M. J.; SÉRÉ, É., Stationary states of the nonlinear Dirac equation: a variational approach, Comm. Math. Phys., 171, 323-350, (1995) · Zbl 0843.35114 [15] Gaudry, G., Quasimeasures and operators commuting with convolution, Pacific J. Math., 18, 461-476, (1966) · Zbl 0156.14601 [16] Gell-Mann, M., Ne’eman, Y.: The Eightfold Way. W. A. Benjamin, Inc., New York, NY, 1964 [17] Guo, Y.; Nakamitsu, K.; Strauss, W., Global finite-energy solutions of the Maxwell-Schrödinger system, Comm. Math. Phys., 170, 181-196, (1995) · Zbl 0830.35131 [18] Glassey, R. T.; Strauss, W. A., Decay of a Yang-Mills field coupled to a scalar field, Comm. Math. Phys., 67, 51-67, (1979) · Zbl 0425.35085 [19] Ginibre, J.; Velo, G., Time decay of finite energy solutions of the nonlinear Klein-Gordon and Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 43, 399-442, (1985) · Zbl 0595.35089 [20] Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, 1981 · Zbl 0456.35001 [21] Hörmander L. The Analysis of Linear Partial Differential Operators. I. Springer Study Edition. Springer-Verlag, Berlin, 1990 [22] Hörmander, L.: On the fully nonlinear Cauchy problem with small data. II. Microlocal Analysis and Nonlinear Waves (Minneapolis, MN, 1988-1989), Volume 30 of IMA Vol. Math. Appl., 51-81. Springer, New York, 1991 [23] Klainerman, S., Long-time behavior of solutions to nonlinear evolution equations, Arch. Ration. Mech. Anal., 78, 73-98, (1982) · Zbl 0502.35015 [24] Komech, A. I.; Mauser, N. J.; Vinnichenko, A. P., Attraction to solitons in relativistic nonlinear wave equations, Russ. J. Math. Phys., 11, 289-307, (2004) · Zbl 1186.35222 [25] Komech, A. I., Stabilization of the interaction of a string with a nonlinear oscillator, Mosc. Univ. Math. Bull., 46, 34-39, (1991) · Zbl 0784.35011 [26] Komech, A.I.: Linear partial differential equations with constant coefficients. Partial Differential Equations, II, Volume 31 Encyclopaedia Math. Sci., 121-255. Springer, Berlin, 1994 · Zbl 0805.35001 [27] Komech, A. I., On stabilization of string-nonlinear oscillator interaction, J. Math. Anal. Appl., 196, 384-409, (1995) · Zbl 0859.35076 [28] Komech, A., On transitions to stationary states in one-dimensional nonlinear wave equations, Arch. Ration. Mech. Anal., 149, 213-228, (1999) · Zbl 0939.35030 [29] Komech, A.I.: On attractor of a singular nonlinear \(U(1)\)-invariant Klein-Gordon equation. Progress in Analysis, Vol. I, II (Berlin, 2001), 599-611. World Sci. Publishing, River Edge, NJ, 2003 · Zbl 1060.35022 [30] Komech, A.; Spohn, H., Long-time asymptotics for the coupled Maxwell-Lorentz equations, Comm. Partial Differential Equations, 25, 559-584, (2000) · Zbl 0970.35149 [31] Komech, A.; Spohn, H.; Kunze, M., Long-time asymptotics for a classical particle interacting with a scalar wave field, Comm. Partial Differential Equations, 22, 307-335, (1997) · Zbl 0878.35094 [32] Komech, A. I.; Vainberg, B., On asymptotic stability of stationary solutions to nonlinear wave and Klein-Gordon equations, Arch. Ration. Mech. Anal., 134, 227-248, (1996) · Zbl 0863.35064 [33] Levin, B.Y.: Lectures on Entire Functions. Volume 150 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1996. In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko. [34] Morawetz, C. S.; Strauss, W. A., Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math., 25, 1-31, (1972) · Zbl 0228.35055 [35] Pillet, C.-A.; Wayne, C. E., Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations, J. Differential Equations, 141, 310-326, (1997) · Zbl 0890.35016 [36] Schrödinger, E., Quantisierung als eigenwertproblem, Ann. d. Phys., 81, 109, (1926) · JFM 52.0966.03 [37] Segal, I. E., The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. Math. France, 91, 129-135, (1963) · Zbl 0178.45403 [38] Segal, I. E., Non-linear semi-groups, Ann. of Math. (2), 78, 339-364, (1963) · Zbl 0204.16004 [39] Strauss, W. A., Decay and asymptotics for \square \(u = f(u),\) J. Funct. Anal., 2, 409-457, (1968) · Zbl 0182.13602 [40] Strauss, W. A., Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55, 149-162, (1977) · Zbl 0356.35028 [41] Strauss, W.A.: Nonlinear invariant wave equations. Invariant Wave Equations (Proc. “Ettore Majorana” Internat. School of Math. Phys., Erice, 1977), Volume 73 of Lecture Notes in Phys., 197-249. Springer, Berlin, 1978 [42] Soffer, A.; Weinstein, M. I., Multichannel nonlinear scattering for nonintegrable equations, Comm. Math. Phys., 133, 119-146, (1990) · Zbl 0721.35082 [43] Soffer, A.; Weinstein, M. I., Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data, J. Differential Equations, 98, 376-390, (1992) · Zbl 0795.35073 [44] Soffer, A.; Weinstein, M. I., Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., 136, 9-74, (1999) · Zbl 0910.35107 [45] Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Volume 68 of Applied Mathematical Sciences. Springer-Verlag, New York, 1997 · Zbl 0871.35001 [46] Titchmarsh, E., The zeros of certain integral functions, Proc. London Math. Soc., 25, 283-302, (1926) · JFM 52.0334.03 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.