×

zbMATH — the first resource for mathematics

Global existence and blow-up phenomena for the Degasperis-Procesi equation. (English) Zbl 1131.35074
The authors obtain two new global existence results for strong solution of the Degasperis-Procesi equation with certain initial profiles. They also establish two new blow-up results and show the existence of a breaking point where the slope of the solution becomes infinite exactly at breaking time.

MSC:
35Q53 KdV equations (Korteweg-de Vries equations)
35B40 Asymptotic behavior of solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Beals R., Sattinger D., Szmigielski J. (1998) Acoustic scattering and the extended Korteweg-de Vries hierarchy. Adv. Math. 140, 190–206 · Zbl 0919.35118 · doi:10.1006/aima.1998.1768
[2] Bressan A., Constantin A.: Global conservative solutions of the Camassa-Holm equation. Preprint, www.math.ntnu.no/conservation/2006/023.html, To appear in Arch. Rat. Mech. Anal.
[3] Camassa R., Holm D. (1993) An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 · Zbl 0936.35153 · doi:10.1103/PhysRevLett.71.1661
[4] Camassa R., Holm D., Hyman J. (1994) A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 · Zbl 0808.76011 · doi:10.1016/S0065-2156(08)70254-0
[5] Coclite G.M., Karlsen K.H. (2006) On the well-posedness of the Degasperis-Procesi equation. J. Funct. Anal. 233, 60–91 · Zbl 1090.35142 · doi:10.1016/j.jfa.2005.07.008
[6] Coclite G.M., Karlsen K.H., Risebro N.H.: Numerical schemes for computing discontinuous solutions of the Degasperis-Procesi equation. Preprint, available at http://www.math.vio.no/\(\sim\)kennethk/articles/art125.pdf, 2006 · Zbl 1246.76114
[7] Constantin A. (2000) Global existence of solutions and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 · Zbl 0944.35062
[8] Constantin A.(2005) Finite propagation speed for the Camassa-Holm equation. J. Math. Phys. 46(023506): 4 · Zbl 1076.35109 · doi:10.1063/1.1845603
[9] Constantin A. (2001) On the scattering problem for the Camassa-Holm equation. Proc. Roy. Soc. London A 457, 953–970 · Zbl 0999.35065 · doi:10.1098/rspa.2000.0701
[10] Constantin A., Escher J. (1998) Global existence and blow-up for a shallow water equation. Annali Sc. Norm. Sup. Pisa 26, 303–328 · Zbl 0918.35005
[11] Constantin A., Escher J. (1998) Wave breaking for nonlinear nonlocal shallow water equations. Acta Mathematica 181, 229–243 · Zbl 0923.76025 · doi:10.1007/BF02392586
[12] Constantin A., Escher J. (1998) Global weak solutions for a shallow water equation. Indiana Univ. Math. J. 47, 1527–1545 · Zbl 0930.35133 · doi:10.1512/iumj.1998.47.1466
[13] Constantin A., Kolev B. (2003) Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78, 787–804 · Zbl 1037.37032 · doi:10.1007/s00014-003-0785-6
[14] Constantin A., McKean H.P. (1999) A shallow water equation on the circle. Comm. Pure Appl. Math. 52, 949–982 · Zbl 0940.35177 · doi:10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D
[15] Constantin A., Molinet L. (2000) Global weak solutions for a shallow water equation. Commun. Math. Phys. 211, 45–61 · Zbl 1002.35101 · doi:10.1007/s002200050801
[16] Constantin A., Strauss W.A. (2000) Stability of peakons. Comm. Pure Appl. Math. 53, 603–610 · Zbl 1049.35149 · doi:10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
[17] Constantin A., Strauss W. (2000) Stability of a class of solitary waves in compressible elastic rods. Phys. Lett. A 270, 140–148 · Zbl 1115.74339 · doi:10.1016/S0375-9601(00)00255-3
[18] Constantin A., Strauss W.A. (2002) Stability of the Camassa-Holm solitons. J. Nonlinear Science 12, 415–422 · Zbl 1022.35053 · doi:10.1007/s00332-002-0517-x
[19] Dai H.H. (1998) Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod. Acta Mechanica 127, 193–207 · Zbl 0910.73036 · doi:10.1007/BF01170373
[20] Degasperis A., Holm D.D., Hone A.N.W. (2002) A New Integral Equation with Peakon Solutions. Theo. Math. Phys. 133, 1463–1474 · doi:10.1023/A:1021186408422
[21] Degasperis A., Procesi M.: Asymptotic integrability. In: Symmetry and Perturbation Theory, edited by A. Degasperis G. Gaeta, Singapore: World Scientific, 1999, pp. 23–37 · Zbl 0963.35167
[22] Drazin P.G., Johnson R.S., (1989) Solitons: an Introduction. Cambridge-New York, Cambridge University Press · Zbl 0661.35001
[23] Dullin H.R., Gottwald G.A., Holm D.D. (2001) An integrable shallow water equation with linear and nonlinear dispersion. Phys. Rev. Lett. 87, 4501–4504 · doi:10.1103/PhysRevLett.87.194501
[24] Dullin H.R., Gottwald G.A., Holm D.D. (2003) Camassa-Holm, Korteweg -de Vries-5 and other asymptotically equivalent equations for shallow water waves. Fluid Dyn. Res. 33, 73–79 · Zbl 1032.76518 · doi:10.1016/S0169-5983(03)00046-7
[25] Escher J., Liu Y., Yin Z.: Global weak solutions and blow-up structure for the Degasperis-Procesi equation. J. Funct. Anal., to appear, doi:10.1016/j.jfa.2006.03.022 · Zbl 1126.35053
[26] Fokas A., Fuchssteiner B. (1981) Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D 4, 47–66 · Zbl 1194.37114 · doi:10.1016/0167-2789(81)90004-X
[27] Henry D. (2005) Infinite propagation speed for the Degasperis-Procesi equation. J. Math. Anal. Appl. 311, 755–759 · Zbl 1094.35099 · doi:10.1016/j.jmaa.2005.03.001
[28] Holm D.D., Staley M.F. (2003) Wave structure and nonlinear balances in a family of evolutionary PDEs. SIAM J. Appl. Dyn. Syst. (electronic) 2, 323–380 · Zbl 1088.76531 · doi:10.1137/S1111111102410943
[29] Johnson R.S. (2002) Camassa-Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 · Zbl 1037.76006 · doi:10.1017/S0022112001007224
[30] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations. In: Spectral Theory and Differential Equations, Lecture Notes in Math. 448 Berlin:Springer Verlag, 1975, pp. 25–70 · Zbl 0315.35077
[31] Kenig C., Ponce G., Vega L. (1993) Well-posedness and scattering results for the generalized Korteweg-de Veris equation via the contraction principle. Comm. Pure Appl. Math. 46, 527–620 · Zbl 0808.35128 · doi:10.1002/cpa.3160460405
[32] Lenells J. (2005) Traveling wave solutions of the Degasperis-Procesi equation. J. Math. Anal. Appl. 306, 72–82 · Zbl 1068.35163 · doi:10.1016/j.jmaa.2004.11.038
[33] Lenells J. (2005) Conservation laws of the Camassa-Holm equation. J. Phys. A 38, 869–880 · Zbl 1076.35100 · doi:10.1088/0305-4470/38/4/007
[34] Li P., Olver P. (2000) Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Eqs. 162, 27–63 · Zbl 0958.35119 · doi:10.1006/jdeq.1999.3683
[35] Liu Y. (2006) Global existence and blow-up solutions for a nonlinear shallow water equation. Math. Ann. 335, 717–735 · Zbl 1102.35021 · doi:10.1007/s00208-006-0768-1
[36] Lundmark H.: Formation and dynamics of shock waves in the Degasperis-Procesi equation. Preprint, available at http://www.mai.liu.se/\(\sim\)halun/papers/Lundmark-DPshock.pdf, 2006 · Zbl 1185.35194
[37] Lundmark H., Szmigielski J. (2003) Multi-peakon solutions of the Degasperis-Procesi equation. Inverse Problems 19, 1241–1245 · Zbl 1041.35090 · doi:10.1088/0266-5611/19/6/001
[38] Matsuno Y. (2005) Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit. Inverse Problems 21, 1553–1570 · Zbl 1086.35095 · doi:10.1088/0266-5611/21/5/004
[39] Mckean H.P.: Integrable systems and algebraic curves. In: Global Analysis. Springer Lecture Notes in Mathematics 755, Berlin-Heidelberg-New York:Springer, 1979, pp. 83–200 · Zbl 0449.35080
[40] Misiolek G. (1998) A shallow water equation as a geodesic flow on the Bott-Virasoro group. J. Geom. Phys. 24, 203–208 · Zbl 0901.58022 · doi:10.1016/S0393-0440(97)00010-7
[41] Mustafa O.G. (2005) A note on the Degasperis-Procesi equation. J. Nonlinear Math. Phys. 12, 10–14 · Zbl 1067.35078 · doi:10.2991/jnmp.2005.12.1.2
[42] Rodriguez-Blanco G. (2001) On the Cauchy problem for the Camassa-Holm equation. Nonlinear Anal. 46, 309–327 · Zbl 0980.35150 · doi:10.1016/S0362-546X(01)00791-X
[43] Tao T.: Low-regularity global solutions to nonlinear dispersive equations. In: Surveys in analysis and operator theory (Canberra,2001), Proc. Centre Math. Appl. Austral. Nat. Univ. 40, Canberra:Austral. Nat. Univ., 2002, pp. 19–48
[44] Vakhnenko V.O., Parkes E.J. (2004) Periodic and solitary-wave solutions of the Degasperis-Procesi equation. Chaos Solitons Fractals 20, 1059–1073 · Zbl 1049.35162 · doi:10.1016/j.chaos.2003.09.043
[45] Whitham G.B., (1980) Linear and Nonlinear Waves. New York, J. Wiley & Sons · Zbl 0373.76001
[46] Xin Z., Zhang P. (2000) On the weak solutions to a shallow water equation. Comm. Pure Appl. Math. 53, 1411–1433 · Zbl 1048.35092 · doi:10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5
[47] Yin Z. (2003) On the Cauchy problem for an integrable equation with peakon solutions. Ill. J. Math. 47, 649–666 · Zbl 1061.35142
[48] Yin Z. (2003) Global existence for a new periodic integrable equation. J. Math. Anal. Appl. 283, 129–139 · Zbl 1033.35121 · doi:10.1016/S0022-247X(03)00250-6
[49] Yin Z. (2004) Global weak solutions to a new periodic integrable equation with peakon solutions. J. Funct. Anal. 212, 182–194 · Zbl 1059.35149 · doi:10.1016/j.jfa.2003.07.010
[50] Yin Z.: Global solutions to a new integrable equation with peakons. Ind. Univ. Math. J. 53 (2004), 1189–1210 (2004) · Zbl 1062.35094
[51] Zhou Y. (2004) Blow-up phenomena for the integrable Degasperis-Procesi equation. Phys. Lett. A 328, 157–162 · Zbl 1134.37361 · doi:10.1016/j.physleta.2004.06.027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.