×

zbMATH — the first resource for mathematics

Limiting behavior of weighted sums of i.i.d. random variables. (English) Zbl 1131.60020
Summary: The strong laws of large numbers, Chover’s laws [J. Chover, Proc. Am. Math. Soc. 17, 441–443 (1966; Zbl 0144.40503)] of the iterated logarithm (LIL) and laws of the single logarithm are established for weighted sums of i.i.d. random variables under suitable conditions on both the weights and the distribution.

MSC:
60F15 Strong limit theorems
60F17 Functional limit theorems; invariance principles
Citations:
Zbl 0144.40503
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bai, Z.D.; Cheng, P.E., Marcinkiewicz strong laws for linear statistics, Statist. probab. lett., 46, 105-112, (2000) · Zbl 0960.60026
[2] Bai, Z.D.; Cheng, P.E.; Zhang, C.H., An extension of the hardy – littlewood strong law, Statist. sinica, 7, 923-928, (1997) · Zbl 1067.60501
[3] Chen, P.Y., Limiting behavior of weighted sums with stable distributions, Statist. probab. lett., 60, 367-375, (2002) · Zbl 1014.60010
[4] Chen, P.Y., On Chover’s LIL for weighted sums of stable random variables, Sankhya, 66, 49-62, (2004), (chenlare) · Zbl 1192.60037
[5] Chen, P.Y.; Yu, J.H., On Chover’s LIL for the weighted sums of stable random variables, Acta math. sci., 23B, 1, 74-82, (2003) · Zbl 1023.60038
[6] Choi, B.D.; Sung, S.H., Almost sure convergence theorems of weighted sums of random variables, Stochast. anal. appl., 5, 365-377, (1987) · Zbl 0633.60049
[7] Chover, J., A law of the iterated logarithm for stable summands, Proc. amer. math. soc., 17, 441-443, (1966) · Zbl 0144.40503
[8] Csörgo, M.; Szyszkowicz, B.; Wu, Q.Y., Donsker’s theorem for self-normalized partial sums processes, Ann. probab., 31, 1228-1240, (2003) · Zbl 1045.60020
[9] Cuzick, J., A strong law for weighted sums of i.i.d. random variables, J. theoret. probab., 8, 625-641, (1995) · Zbl 0833.60031
[10] Giuliano Antonini, R.; Kwon, J.S.; Sung, S.H.; Volodin, A.I., On the strong convergence of weighted sums, Stochast. anal. appl., 19, 903-909, (2001) · Zbl 0989.60037
[11] Gut, A., Complete convergence and Cesàro summation for i.i.d. random variables, Probab. theory related fields, 97, 169-178, (1993) · Zbl 0793.60034
[12] Hoffmann-Jørgensen, J., Sums of independent Banach space valued random variables, Studia math., 52, 159-186, (1974) · Zbl 0265.60005
[13] Hu, T.-C.; Szynal, D.; Rosalsky, A.; Volodin, A.I., On complete convergence for arrays of rowwise independent random elements in Banach spaces, Stochast. anal. appl., 17, 963-992, (1999) · Zbl 0940.60032
[14] Hu, T.-C.; Li, D.; Rosalsky, A.; Volodin, A.I., On the rate of complete convergence for weighted sums of Banach space valued random elements, Theory probab. appl., 47, 455-468, (2002) · Zbl 1035.60004
[15] Jain, N.C., Tail probability for sums of independent Banach space valued random variables, Z. wahrsch. verw. geb., 33, 155-166, (1975) · Zbl 0304.60033
[16] Ledoux, M.; Talagrand, M., Probability in Banach spaces, (1991), Springer-Verlag Berlin, Heidelberg · Zbl 0662.60008
[17] Li, D.L.; Rao, M.B.; Jiang, T.F., Complete convergence and almost sure convergence of weighted sums of random variables, J. theoret. probab., 8, 49-76, (1995) · Zbl 0814.60026
[18] Peng, L.; Qi, Y.C., Chover-type laws of the iterated logarithm for weighted sums, Statist. probab. lett., 65, 401-410, (2003) · Zbl 1116.60323
[19] Rosalsky, A.; Sreehari, M., On the limiting behavior of randomly weighted partial sums, Statist. probab. lett., 40, 403-410, (1998) · Zbl 0937.60014
[20] Sakhanenko, A.I., 1980. On unimprovable estimates of the rate of convergence in the invariance principle. in Colloquia Mathematica Societatis János Bolyai, vol. 32, Nonparametric Statistical Inference, Budapest, Hungary, pp. 779-783.
[21] Sakhanenko, A.I., On estimates of the rate of convergence in the invariance principle, (), 124-135 · Zbl 0364.60026
[22] Sakhanenko, A.I., Convergence rate in the invariance principle for nonidentically distributed variables with exponential moments, (), 2-73
[23] Sawyer, S., Maximal inequalities of weak type, Ann. math., 84, 157-174, (1966) · Zbl 0186.20503
[24] Stout, W.F., Almost sure convergence, (1974), Academic Press New York · Zbl 0165.52702
[25] Sung, S.H., Strong laws for weighted sums of i.i.d. random variables, Statist. probab. lett., 52, 413-419, (2001) · Zbl 1020.60016
[26] Volodin, A., Convergence of weighted sums of random elements in spaces of type \(p\), Izv. vyssh. uchebn. zevid. mat., 34, 10, 65-67, (1990)
[27] Volodin, A., Convergence of weighted sums of random elements in Banach spaces of type p, Izv. vyssh. uchebn. zevid. mat., 41, 8, 1-10, (1997)
[28] Wu, W.B., On the strong convergence of a weighted sum, Statist. probab. lett., 44, 19-22, (1999) · Zbl 0951.60027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.