Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions. (English) Zbl 1131.93354

Summary: This paper considers the collective dynamics of a group of mobile autonomous agents moving in Euclidean space with a virtual leader. We introduce a set of coordination control laws that enable the group to generate the desired stable flocking motion. The control laws are a combination of attractive/repulsive and alignment forces, and the control law acting on each agent relies on the state information of its flockmates and the external reference signal (or “virtual leader”). Using the control laws, all agent velocities asymptotically approach the desired velocity, collisions can be avoided between the agents, and the final tight formation minimizes all agent global potentials. Moreover, we show that the velocity of the center of mass either is equal to the desired velocity or exponentially converges to it. Furthermore, when the velocity damping is taken into account, we can appropriately modify the control laws to generate the same stable flocking motion. Subsequently, for the case where not all agents know the desired common velocity, we show that the desired flocking motion can still be guaranteed. Numerical simulations are worked out to illustrate our theoretical results. Additionally, we consider the effect of white noise on the collective dynamics of the group, and demonstrate numerically that the desired flocking motion can be kept for weak noise and, as the noise intensity increases, the flocking motion can be destroyed.


93C83 Control/observation systems involving computers (process control, etc.)


Full Text: DOI


[1] N.E. Leonard, E. Fiorelli, Virtual leaders, artificial potentials and coordinated control of groups, in: Proc. 40th IEEE Conf. Decision and Control, vol. 3, 2001, pp. 2968-2973
[2] Warburton, K.; Lazarus, J., Tendency – distance models of social cohesion in animal groups, J. theor. biol., 150, 473-488, (1991)
[3] Suzuki, I.; Yamashita, M., Distributed anonymous mobile robots: formation of geometric patterns, SIAM J. comput., 28, 1347-1363, (1999) · Zbl 0940.68145
[4] Reif, J.H.; Wang, H., Social potential fields: a distributed behavioral control for autonomous robots, Robot. auton. syst., 27, 171-194, (1999)
[5] Giulietti, F.; Pollini, L.; Innocenti, M., Autonomous formation flight, IEEE control syst. mag., 20, 34-44, (2000)
[6] Rimon, E.; Koditschek, D.E., Exact robot navigation using artificial potential functions, IEEE trans. robot. autom., 8, 501-518, (1992)
[7] R. Bachmayer, N.E. Leonard, Vehicle networks for gradient descent in a sampled environment, in: Proc. 41st IEEE Conf. Decision and Control, vol. 1, 2002, pp. 112-117
[8] Olfati-Saber, R.; Murray, R.M., Consensus problems in networks of agents with switching topology and time-delays, IEEE trans. automat. control, 49, 1520-1533, (2004) · Zbl 1365.93301
[9] C.W. Reynolds, Flocks, herds, and schools: a distributed behavioral model, in: ACM SIGGRAPH ’87 Conference Proceedings, Computer Graphics 21 (1987) 25-34
[10] Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O., Novel type of phase transition in a system of self-driven particles, Phys. rev. lett., 75, 1226-1229, (1995)
[11] Czirók, A.; Vicsek, M.; Vicsek, T., Collective motion of organisms in three dimensions, Phys. A, 264, 299-304, (1999)
[12] Czirók, A.; Vicsek, T., Collective behavior of interacting self-propelled particles, Phys. A, 281, 17-29, (2000)
[13] Jadbabaie, A.; Lin, J.; Morse, A.S., Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE trans. automat. control, 48, 988-1001, (2003) · Zbl 1364.93514
[14] Savkin, A.V., Coordinated collective motion of groups of autonomous mobile robots: analysis of vicsek’s model, IEEE trans. automat. control, 49, 981-983, (2004) · Zbl 1365.93327
[15] H.G. Tanner, A. Jadbabaie, G.J. Pappas, Stable flocking of mobile agents, Part I: Fixed topology; Part II: Dynamic topology, in: Proc. 42nd IEEE Conf. Decision and Control, vol. 2, 2003, pp. 2010-2015, 2016-2021
[16] H. Shi, L. Wang, T. Chu, W. Zhang, Coordination of a group of mobile autonomous agents, in: Proc. International Conference on Advances in Intelligent Systems—Theory and Applications, Luxembourg, November, 2004
[17] H. Shi, L. Wang, T. Chu, Coordination of multiple dynamic agents with asymmetric interactions, in: Proc. IEEE International Symposium on Intelligent Control, Limassol, Cyprus, 2005. pp. 1423-1428
[18] L. Wang, H. Shi, T. Chu, Flocking control of groups of mobile autonomous agents via local feedback, in: Proc. IEEE International Symposium on Intelligent Control, Limassol, Cyprus, 2005. pp. 441-446
[19] Shi, H.; Wang, L.; Chu, T.; Xu, M., Flocking control of multiple interactive dynamical agents with switching topology via local feedback, (), 604-613
[20] Gazi, V.; Passino, K.M., Stability analysis of swarms, IEEE trans. automat. control, 48, 692-697, (2003) · Zbl 1365.92143
[21] Gazi, V.; Passino, K.M., Stability analysis of social foraging swarms, IEEE trans. syst. man cybern. B, 34, 539-557, (2004)
[22] Liu, Y.; Passino, K.M.; Polycarpou, M.M., Stability analysis of m-dimensional asynchronous swarms with a fixed communication topology, IEEE trans. automat. control, 48, 76-95, (2003) · Zbl 1364.93474
[23] Wang, L.; Shi, H.; Chu, T.; Zhang, W.; Zhang, L., Aggregation of foraging swarms, (), 766-777
[24] Chu, T.; Wang, L.; Chen, T., Self-organized motion in anisotropic swarms, J. control theory appl., 1, 77-81, (2003)
[25] T. Chu, L. Wang, S. Mu, Collective behavior analysis of an anisotropic swarm model, in: Proc. of the 16th Int. Symp. Mathematical Theory of Networks and Systems (MTNS 2004), Paper ID: REG-345, Leuven, Belgium, July 2004, pp. 1-14
[26] T. Chu, L. Wang, T. Chen, S. Mu, Complex emergent dynamics of anisotropic swarms: convergence vs. oscillation, Chaos Solitons Fractals (2006) (in press) · Zbl 1142.34346
[27] Mu, S.; Chu, T.; Wang, L., Coordinated collective motion in a motile particle group with a leader, Phys. A, 351, 211-226, (2005)
[28] Liu, B.; Chu, T.; Wang, L.; Wang, Z., Swarm dynamics of a group of mobile autonomous agents, Chin. phys. lett., 22, 254-257, (2005)
[29] Shi, H.; Wang, L.; Chu, T., Swarming behavior of multi-agent systems, J. control theory appl., 2, 313-318, (2004)
[30] Godsil, C.; Royle, G., Algebraic graph theory, (2001), Springer-Verlag New York · Zbl 0968.05002
[31] Horn, R.A.; Johnson, C.R., Matrix analysis, (1985), Cambridge University Press New York · Zbl 0576.15001
[32] Khalil, H.K., Nonlinear systems, (1996), Prentice-Hall Upper Saddle River, NJ · Zbl 0626.34052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.