Fon-Der-Flaass, D. G. Perfect colorings of the 12-cube that attain the bound on correlation immunity. (Russian. English summary) Zbl 1132.05314 Sib. Èlektron. Mat. Izv. 4, 292-295 (2007). Summary: We construct perfect 2-colorings of the 12-hypercube that attain our recent bound on the dimension of arbitrary correlation immune functions. We prove that such colorings with parameters \((x, 12-x, 4+x, 8-x)\) exist if \(x = 0, 2, 3\) and do not exist if \(x = 1\). Cited in 15 Documents MSC: 05C15 Coloring of graphs and hypergraphs Keywords:Boolean function; maximal nonlinearity PDF BibTeX XML Cite \textit{D. G. Fon-Der-Flaass}, Sib. Èlektron. Mat. Izv. 4, 292--295 (2007; Zbl 1132.05314) Full Text: Link EuDML arXiv