Existence of nontrivial solutions for a nonlinear Sturm-Liouville problem with integral boundary conditions. (English) Zbl 1132.34022

The Sturm-Liouville problem with integral boundary value conditions \[ -(au')' + bu = g(t)f(t,u), \quad t \in (0,1), \]
\[ (\cos \gamma_0) u(0) - (\sin \gamma_0) u'(0) = \int_0^1 u(\tau) \,d\alpha(\tau), \]
\[ (\cos \gamma_1) u(1) + (\sin \gamma_1) u'(1) = \int_0^1 u(\tau) \,d\beta(\tau), \] is considered, where \(\int_0^1 u(\tau)\,d\alpha(\tau)\) and \(\int_0^1 u(\tau) \,d\beta(\tau)\) denote Riemann-Stieltjes integrals. Existence results of a nontrivial solution are established. The proofs are based on the Leray-Schauder degree theory.


34B24 Sturm-Liouville theory
34B15 Nonlinear boundary value problems for ordinary differential equations
34B16 Singular nonlinear boundary value problems for ordinary differential equations
47H11 Degree theory for nonlinear operators
Full Text: DOI


[1] Feng, W.; Webb, J.R.L., Solvability of an \(m\)-point boundary value problem with nonlinear growth, J. math. anal. appl., 212, 467-480, (1997) · Zbl 0883.34020
[2] Gupta, C.P.; Ntouyas, S.K.; Tsamatos, P.Ch., Solvability of an \(m\)-point boundary value problem for second order ordinary differential equations, J. math. anal. appl., 189, 575-584, (1995) · Zbl 0819.34012
[3] Gupta, C.P.; Trofimchuk, S.I., A sharper condition for the solvability of a three-point second order boundary value problem, J. math. anal. appl., 205, 586-597, (1997) · Zbl 0874.34014
[4] Gupta, C.P.; Trofimchuk, S.I., Solvability of a multi-point boundary value problem and related a priori estimates, Can. appl. math. Q., 6, 45-60, (1998) · Zbl 0922.34014
[5] Gupta, C.P.; Trofimchuk, S.I., Existence of a solution of a three-point boundary value problem and the spectral radius of a related linear operator, Nonlinear anal., 34, 489-507, (1998) · Zbl 0944.34009
[6] Han, G.; Wu, Y., Nontrivial solutions of singular two-point boundary value problems with sign-changing nonlinear terms, J. math. anal. appl., 325, 1327-1338, (2007) · Zbl 1111.34019
[7] Henderson, J., Double solutions of three-point boundary-value problems for second-order differential equations, Electron. J. differential equations, 115, 1-7, (2004) · Zbl 1075.34013
[8] Karakostas, G.L.; Tsamatos, P.Ch., Existence of multiple positive solutions for a nonlocal boundary value problem, Topol. methods nonlinear anal., 19, 109-121, (2002) · Zbl 1028.34023
[9] Karakostas, G.L.; Tsamatos, P.Ch., Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems, Electron. J. differential equations, 30, 1-17, (2002) · Zbl 0998.45004
[10] Karakostas, G.L.; Tsamatos, P.Ch., Sufficient conditions for the existence of nonnegative solutions of a nonlocal boundary value problem, Appl. math. lett., 15, 401-407, (2002) · Zbl 1028.34023
[11] Krasnoselskii, M.A.; Zabreiko, B.P., Geometrical methods of nonlinear analysis, (1984), Springer
[12] Krein, M.G.; Rutman, M.A., Linear operators leaving invariant a cone in a Banach space, Transl. amer. math. soc., 10, 199-325, (1962) · Zbl 0030.12902
[13] Ma, R., Nonlocal problems for nonlinear ordinary differential equations, (2004), Science Press Beijing, (in Chinese)
[14] Ma, R.; O’Regan, D., Solvability of singular second order \(m\)-point boundary value problems, J. math. anal. appl., 301, 124-134, (2005) · Zbl 1062.34018
[15] Ma, R.; O’Regan, D., Nodal solutions for second-order \(m\)-point boundary value problems with nonlinearities across several eigenvalues, Nonlinear anal., 64, 1562-1577, (2006) · Zbl 1101.34006
[16] Sun, J.; Guo, G., Nontrivial solutions of singular superlinear sturm – liouville problems, J. math. anal. appl., 313, 518-536, (2006) · Zbl 1100.34019
[17] Webb, J.R.L., Positive solutions of some three-point boundary value problems via fixed point index theory, Nonlinear anal., 47, 4319-4332, (2001) · Zbl 1042.34527
[18] Webb, J.R.L., Optimal constants in a nonlocal boundary value problem, Nonlinear anal., 63, 672-685, (2005) · Zbl 1153.34320
[19] Webb, J.R.L.; Lan, K.Q., Eigenvalue criteria for existence of multiple positive solutions of local and nonlocal type, Topol. methods nonlinear anal., 27, 91-115, (2006) · Zbl 1146.34020
[20] Xu, X., Multiple sign-changing solutions for some \(m\)-point boundary value problems, Electron. J. differential equations, 89, 1-14, (2004)
[21] Xu, X.; Sun, J., On sign-changing solution for some three-point boundary value problems, Nonlinear anal., 59, 491-505, (2004) · Zbl 1069.34019
[22] Yang, Z., Existence and nonexistence results for positive solutions of an integral boundary value problem, Nonlinear anal., 65, 1489-1511, (2006) · Zbl 1104.34017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.