## Standing waves for nonlinear Schrödinger equations with a general nonlinearity.(English)Zbl 1132.35078

The paper under review deals with positive solutions in $$H^1(\mathbb{R}^N)$$ of the equation
$\varepsilon^2\Delta v- V(x) v+ f(v)= 0,$
where $$\varepsilon> 0$$ is sufficiently small, and $$f$$ satisfies that $$f(e^{i\theta}v)= e^{i\theta}f(v)$$. These solutions correspond precisely to the so-called standing waves $$\psi(x, t)= \exp(iEt/h)v(x)$$ of the nonlinear Schrödinger equation
$ih{\partial\psi\over\partial t}+ {h^2\over 2}\Delta\psi= V(x)+ f(\psi)= 0,\qquad (t,x)\in \mathbb{R}\times \mathbb{R}^N.$
The authors explore some essential conditions that guarantee the existence of localized ground states $$v$$. In particular, they are concerned with single-peak solutions $$v$$ which concentrate around local minimum points of $$V$$ as $$\varepsilon\to 0$$, since then the corresponding standing waves are possible candidates for orbitally stable solutions. Their main result is as follows.
Theorem. Let $$N\geq 3$$, and assume that
(V1) $$V\in C(\mathbb{R}^N,\mathbb{R})$$, and $$V_0:= \text{inf}_{\mathbb{R}^N}V> 0$$;
(V2) there exists a bounded domain $$O$$ such that $$m:= \text{inf}_OV> \min_{\partial O} V$$;
(F1) $$\lim_{t\to 0^+}f(t)/t= 0$$;
(F2) there exists $$p\in(1, (N+ 2)/(N- 2))$$ such that $$\limsup_{t\to\infty}f(t)/t^p<\infty$$;
(F3) there exists $$T> 0$$ such that $$mT^2/2< \int^T_0f(t)\,dt$$.
Then, for any sufficiently small $$\varepsilon> 0$$, there exists a solution $$v_\varepsilon> 0$$ in $$H^1(\mathbb{R}^N)$$ possesses the properties (i) there exists a maximum point $$x_\varepsilon$$ of $$v_\varepsilon$$ such that the distance from it to the domain
$\{x\in O: V(x)= m\}$ tends to $$0$$ as $$\varepsilon\to 0$$;
(ii) if $$\varepsilon\to 0$$ and up to a subsequence, the functions $$w_\varepsilon(x):= v_\varepsilon(\varepsilon(x- x_\varepsilon))$$ converge uniformly to a least energy solution $$u> 0$$ in $$H^1(\mathbb{R}^N)$$ of the equation
$\Delta u- mu+ f(u)= 0;$
(iii) $$v_\varepsilon(x)\leq C\exp(-c|x- x_\varepsilon|/\varepsilon)$$ for some constants $$c$$, $$C> 0$$ independent of $$\varepsilon$$.

### MSC:

 35Q55 NLS equations (nonlinear Schrödinger equations)

### Keywords:

nonlinear Schrödinger equation; standing waves
Full Text:

### References:

  Ambrosetti, A.; Badiale, M.; Cingolani, S., Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 140, 285-300, (1997) · Zbl 0896.35042  Ambrosetti, A.; Malchiodi, A.; Secchi, S., Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Ration. Mech. Anal., 159, 253-271, (2001) · Zbl 1040.35107  Avila, A.; Jeanjean, L., A result on singularly perturbed elliptic problems, Commun. Pure. App. Anal., 4, 343-358, (2005)  Berestycki, H.; Lions, P-L., Nonlinear scalar field equations I, Arch. Ration. Mech. Anal., 82, 313-346, (1983) · Zbl 0533.35029  Byeon, J., Existence of large positive solutions of some nonlinear elliptic equations on singularly perturbed domains, Comm. Partial Differential Equations, 22, 1731-1769, (1997) · Zbl 0883.35040  Byeon, J.; Wang, Z.-Q., Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 165, 295-316, (2002) · Zbl 1022.35064  Byeon, J.; Wang, Z.-Q., Standing waves with a critical frequency for nonlinear Schrödinger equations II, Calc. Var. Partial Differential Equations, 18, 207-219, (2003) · Zbl 1073.35199  Cazenave, T.; Lions, P-L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85, 549-561, (1982) · Zbl 0513.35007  Cid, C.; Felmer, P. L., Orbital stability and standing waves for the nonlinear Schrödinger equation with potential, Rev. Math. Phys., 13, 1529-1546, (2001) · Zbl 1038.35112  Coti-Zelati, V.; Rabinowitz, P. H., Homoclinic type solutions for a semilinear elliptic PDE on R$$N,$$ Comm. Pure Appl. Math., 45, 1217-1269, (1992) · Zbl 0785.35029  Dancer E.N. Personal communication. Milan, 2002  Dancer, E. N.; Lam, K. Y.; Yan, S., The effect of the graph topology on the existence of multipeak solutions for nonlinear Schrödinger equations, Abstr. Appl. Anal., 3, 293-318, (1998) · Zbl 1053.35503  Dancer, E. N.; Yan, S., On the existence of multipeak solutions for nonlinear field equations on R$$N,$$ Discrete Contin. Dyn. Syst., 6, 39-50, (2000) · Zbl 1157.35367  Del Pino, M.; Felmer, P. L., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4, 121-137, (1996) · Zbl 0844.35032  Del Pino, M.; Felmer, P. L., Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., 149, 245-265, (1997) · Zbl 0887.35058  Del Pino, M.; Felmer, P. L., Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. non Linéaire, 15, 127-149, (1998) · Zbl 0901.35023  Del Pino, M.; Felmer, P. L., Semi-classical states for nonlinear Schrödinger equations: a variational reduction method, Math Ann., 324, 1-32, (2002) · Zbl 1030.35031  Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential, J. Funct. Anal., 69, 397-408, (1986) · Zbl 0613.35076  Gidas, B.; Ni, W. N.; Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68, 209-243, (1979) · Zbl 0425.35020  Gilbarg D., Trudinger N.S. 1983 Elliptic Partial Differential Equations of Second Order. Second edition. Grundlehren 224, Springer, Berlin · Zbl 0562.35001  Gui, C., Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Comm. Partial Differential Equations, 21, 787-820, (1996) · Zbl 0857.35116  Jeanjean, L.; Tanaka, K., A remark on least energy solutions in R$$N,$$ Proc. Amer. Math. Soc., 131, 2399-2408, (2003) · Zbl 1094.35049  Jeanjean, L.; Tanaka, K., Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. Partial Differential Equations, 21, 287-318, (2004) · Zbl 1060.35012  Kang, X.; Wei, J., On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differential Equations, 5, 899-928, (2000) · Zbl 1217.35065  Li, Y. Y., On a singularly perturbed elliptic equation, Adv. Differential Equations, 2, 955-980, (1997) · Zbl 1023.35500  Lions, P-. L., The concentration-compactness principle in the calculus of variations. The locally compact case, Part II, Ann. Inst. Henri Poincaré, 1, 223-283, (1984) · Zbl 0704.49004  Oh, Y. G., Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $$(V)\_{}\{a\}$$., Comm. Partial Differential Equation, 13, 1499-1519, (1988) · Zbl 0702.35228  Oh, Y. G., On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys., 131, 223-253, (1990) · Zbl 0753.35097  Rabinowitz, P. H., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, 270-291, (1992) · Zbl 0763.35087  Struwe M. 1990 Variational Methods: Application to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer-Verlag · Zbl 0746.49010  Wang, X., On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153, 229-244, (1993) · Zbl 0795.35118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.