×

zbMATH — the first resource for mathematics

On chaos synchronization of fractional differential equations. (English) Zbl 1132.37308
Summary: A simple but efficient method for chaos synchronization of fractional differential systems is proposed, which is based upon the stability criterion of linear fractional differential systems. Using this new method, chaos synchronization for fractional Lorenz, Rössler, and Chen systems are implemented.

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
26A33 Fractional derivatives and integrals
34D20 Stability of solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Oustlaoup A, Systèms asservis d’ ordre fractionnaire (Éditions Masson, 1983).
[2] Ross, B., Fractional calculus and its applications, ()
[3] Bagley, R.L.; Calico, R.A., J guid control dyn, 14, 304, (1991)
[4] Koeller, R.C., J appl mech, 51, 299, (1984)
[5] Koeller, R.C., Acta polytech scand, mech eng ser, 58, 251, (1986)
[6] Sun, H.H.; Abdelwahad, A.A.; Onaral, B., IEEE trans auto control, 29, 441, (1984)
[7] Ichise, M.; Nagayanagi, Y.; Kojima, T., Electroanal J chem interfacial electrochem, 33, 253, (1971)
[8] Heaviside, O., Electromagnetic theory, (1971), Chelsea New York · JFM 30.0801.03
[9] Hartley, T.T.; Lorenzo, C.F.; Qammer, H.K., IEEE trans circuits syst I, 42, 485, (1995)
[10] Arena P, Caponetto R, Fortuna L, Porto D, In: Proceedings of ECCTD, Technical University of Budapest, Budapest, September, vol. 1259, 1997. · Zbl 0936.92006
[11] Grigorenko, I.; Grigorenko, E., Phys rev lett, 91, 034101, (2003)
[12] Li, C.G.; Chen, G., Physica A, 341, 55, (2004)
[13] Li, C.P.; Peng, G.J., Chaos, solitons & fractals, 22, 443, (2004)
[14] Li, C.G.; Chen, G., Chaos, solitons & fractals, 22, 549, (2004)
[15] Pecora, L.M.; Carroll, T.L., Phys rev lett, 64, 821, (1990)
[16] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D.L.; Zhou, C.S., Phys rep, 366, 1, (2002)
[17] González-Miranda, J.M., Phys rev E, 53, R5-R8, (1996)
[18] Mainieri, R.; Rehacek, J., Phys rev lett, 82, 3042, (1999)
[19] Yan, J.P.; Li, C.P., Chaos, solitons & fractals, 23, 1683, (2005)
[20] Lu, J.G., Chaos, solitons & fractals, 27, 519, (2006)
[21] Matignon D. Stability results of fractional differential equations with applications to control processing. In: IMACS, IEEE-SMC, Lille, France, 963, 1996.
[22] Caputo, M., The geophys J roy astronom soc, 13, 529, (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.