Homotopy perturbation method for fractional KdV-Burgers equation. (English) Zbl 1132.65118

Summary: We extend the homotopy perturbation method to solve nonlinear fractional partial differential equations. The time- and space-fractional Korteweg-de Vries (KdV)-Burgers equations with initial conditions are chosen to illustrate our method. As a result, we successfully obtain some available approximate solutions of them. The results reveal that the proposed method is very effective and simple for obtaining approximate solutions of nonlinear fractional partial differential equations.


65R20 Numerical methods for integral equations
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
45K05 Integro-partial differential equations
45G10 Other nonlinear integral equations
26A33 Fractional derivatives and integrals
Full Text: DOI


[1] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010
[2] West, B.J.; Bolognab, M.; Grigolini, P., Physics of fractal operators, (2003), Springer New York
[3] Miller, K.S.; Ross, B., An introduction to the fractional calculus and fractional differential equations, (1993), Wiley New York · Zbl 0789.26002
[4] Samko, S.G.; Kilbas, A.A.; Marichev, O.I., Fractional integrals and derivatives: theory and applications, (1993), Gordon and Breach Yverdon · Zbl 0818.26003
[5] Chechkin, A.V.; Gorenflo, R.; Sokolov, I.M.; Gonchar, Yu.V., Frac calc appl anal, 6, 259, (2003)
[6] Ochmann, M.; Makarov, S., J acoust soc am, 6, 94, (1993)
[7] Caputo, M., J roy astron soc, 13, 529, (1967)
[8] Ablowitz, M.J.; Clarkson, P.A., Soliton, nonlinear evolution equations and inverse scattering, (1991), Cambridge University Press New York · Zbl 0762.35001
[9] Wadati, M.; Toda, M.; Wadati, M.; Sanuki, H.; Konno, K.; Konno, K.; Wadati, M., J phys soc jpn, Prog theor phys, Prog theor phys, 53, 1652, (1975)
[10] Matveev, V.B.; Salle, M.A., Darboux transformation and solitons, (1991), Springer Berlin · Zbl 0744.35045
[11] Clarkson, P.A.; Kruskal, M.D., J math phys, 30, 2202, (1989)
[12] Conte, R.; Musette, M., J phys A: math gen, 22, 169, (1989)
[13] Lou, S.Y.; Lu, J.Z.; Lou, S.Y.; Hu, X.B., J phys A: math gen, J math phys, 30, L95, (1997)
[14] Fan, E.G.; Fan, E.G., Phys lett A, Phys lett A, 285, 373, (2001)
[15] Yan, Z.Y.; Yan, Z.Y., Phys lett A, Chaos, solitons & fractals, 16, 759, (2003)
[16] Chen, Y.; Li, B.; Chen, Y., Chaos, solitons & fractals, Chinese phys, 12, 9, 940, (2003)
[17] Wang, Q.; Chen, Y.; Zhang, H.Q.; Wang, Q.; Chen, Y.; Zhang, H.Q., Phys lett A, Chaos, solitons & fractals, 25, 1019, (2005)
[18] Adomian, G.; Adomian, G., Solving frontier problems of physics: the decomposition method, J math anal appl, 135, 501, (1994), Kluwer Academic Publishers Boston · Zbl 0671.34053
[19] Wazwaz, A.M.; Wazwaz, A.M., Partial differential equations: methods and applications, Chaos, solitons & fractals, 12, 1549, (2002), Balkema The Netherlands · Zbl 1022.35051
[20] Liao, S.J., Beyond perturbation: introduction to homotopy analysis method, (2003), Chapman & Hall Boca Raton
[21] He, J.H., Chaos, solitons & fractals, 19, 4, 847, (2004)
[22] He, J.H.; He, J.H., Commun nonlinear sci numer simulat, Comput method appl mech eng, 178, 2, 257, (1999)
[23] He, J.H., Perturbation methods: basic and beyond, (2006), Elsevier Amsterdam
[24] El-Shahed, M., Int J nonlinear sci numer simul, 6, 2, 163, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.