zbMATH — the first resource for mathematics

A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. (English) Zbl 1132.86312
Summary: The sub-grid-scale parameterization of clouds is one of the weakest aspects of weather and climate modeling today, and the explicit simulation of clouds will be one of the next major achievements in numerical weather prediction. Research cloud models have been in development over the last 45 years and they continue to be an important tool for investigating clouds, cloud-systems, and other small-scale atmospheric dynamics. The latest generation are now being used for weather prediction. The Advanced Research WRF (ARW) model, representative of this generation and of a class of models using explicit time-splitting integration techniques to efficiently integrate the Euler equations, is described in this paper. It is the first fully compressible conservative-form nonhydrostatic atmospheric model suitable for both research and weather prediction applications. Results are presented demonstrating its ability to resolve strongly nonlinear small-scale phenomena, clouds, and cloud systems. Kinetic energy spectra and other statistics show that the model is simulating small scales in numerical weather prediction applications, while necessarily removing energy at the gridscale but minimizing artificial dissipation at the resolved scales. Filtering requirements for atmospheric models and filters used in the ARW model are discussed.

86A10 Meteorology and atmospheric physics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76E06 Convection in hydrodynamic stability
76R10 Free convection
76U05 General theory of rotating fluids
Full Text: DOI
[1] Anthes, R., Regional models of the atmosphere in middle latitudes, Mon. wea. rev., 111, 1306-1335, (1983)
[2] Bartello, P.; Thomas, S.J., The cost-effectiveness of semi-Lagrangian advection, Mon. wea. rev., 124, 2883-2897, (1996)
[3] Benoit, R.; Desgagné, M.; Pellerin, P.; Pellerin, S.; Chartier, Y.; Desjardins, S., The Canadian MC2: a semi-Lagrangian, semi-implicit wideband atmospheric model suited for finescale process studies and simulation, Mon. wea. rev., 125, 2382-2415, (1997)
[4] L.R. Bernardet, L.B. Nance, H.-Y. Chuang, A. Loughe, M. Demirtas, S. Koch, R. Gall, The developmental testbed center winter forecasting experiment (DWFE). American Meteorological Society, in: 17th Conference on Numerical Weather Prediction, Washington, DC, 31 July-5 August 2005. Available from: <http://www.ametsoc.org>.
[5] Bryan, G.H.; Wyngaard, J.C.; Fritsch, J.M., Resolution requirements for the simulation of deep moist convection, Mon. wea. rev., 131, 2394-2416, (2003)
[6] Davies, T.; Staniforth, A.; Wood, N.; Thuburn, J., Validity of anelastic and other equation sets as inferred from normal-mode analysis, Quart. J. roy. meteor. soc., 129, 2761-2775, (2003)
[7] Dietachmayer, G.S.; Droegemeier, K.K., Application of continuous dynamic grid adaption techniques to meteorological modeling. part I. basic formulation and accuracy, Mon. wea. rev., 120, 1675-1706, (1992)
[8] Doms, G.; Schättler, U., The nonhydrostatic limited-area model LM (lokal modell) of DWD. part I. scientific documentation, (1997), Deutscher Wetterdienst (DWD) Offenbach
[9] Done, J.; Davis, C.A.; Weisman, M.L., The next generation of NWP: explicit forecasts of convection using the weather research and forecasting (WRF) model, Atmos. sci. lett., 5, 110-117, (2004)
[10] Dudhia, J., A nonhydrostatic version of the penn state - NCAR mesoscale model: validation tests and simulation of an atlantic cyclone and cold front, Mon. wea. rev., 121, 1493-1513, (1993)
[11] Durran, D.R., Improving the anelastic approximation, J. atmos. sci., 46, 1453-1461, (1989)
[12] Durran, D.R.; Klemp, J.B., A compressible model for the simulation of moist mountain waves, Mon. wea. rev., 111, 2341-2361, (1983)
[13] Haltiner, G.J.; Williams, R.T., Numerical weather prediction and dynamics meteorology, (1980), Wiley New York, p. 477
[14] Hodur, R.M., The naval research laboratory’s coupled Ocean/atmosphere mesoscale prediction system (COAMPS), Mon. wea. rev., 125, 1414-1430, (1997)
[15] Hundsdorfer, W.B.; Koren, B.; van Loon, M.; Verwer, J.G., A positive finite difference advection scheme, J. comput. phys., 117, 35-46, (1995) · Zbl 0860.65073
[16] Jones, R.W., A nested grid for a three-dimensional model of a tropical cyclone, J. atmos. sci., 34, 1528-1553, (1977)
[17] J.B. Klemp, W.C. Skamarock, J. Dudhia, Conservative split-explicit time integration methods for the compressible nonhydrostatic equations, Mon. Wea. Rev. (2007) (in press).
[18] Klemp, J.B., Dynamics of tornadic storms, Annu. rev. fluid mech., 19, 369-402, (1987)
[19] Klemp, J.B.; Wilhelmson, R.B., The simulation of three-dimensional convective storm dynamics, J. atmos. sci., 35, 1070-1096, (1978)
[20] Laprise, R., The Euler equations of motion with hydrostatic pressure as an independent variable, Mon. wea. rev., 120, 197-207, (1992)
[21] Lemon, L.R.; Doswell, C.A., Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis, Mon. wea. rev., 107, 1184-1197, (1979)
[22] Lilly, D.K., On the numerical simulation of buoyant convection, Tellus, 14, 148-172, (1962)
[23] Lindborg, E., Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence?, J. fluid mech., 388, 259-288, (1999) · Zbl 0959.76033
[24] Meneveau, C.; Katz, J., Scale invariance and turbulence models for large-eddy simulation, Annu. rev. fluid mech., 32, 1-32, (2000) · Zbl 0988.76044
[25] Mesinger, F., The forward – backward scheme and its use in a limited area model, Contrib. atmos. phys., 50, 200-210, (1977)
[26] Mesinger, F.; Arakawa, A., Numerical methods used in atmospheric models, GARP publications series, no. 17, (1976), World Meteorological Organization
[27] Nastrom, G.D.; Gage, K.S., A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft, J. atmos. sci., 42, 950-960, (1985)
[28] Ogura, Y.; Phillips, N.A., Scale analysis of deep and shallow convection in the atmosphere, J. atmos. sci., 19, 173-179, (1962)
[29] Ooyama, K.V., A thermodynamic foundation for modeling the moist atmosphere, J. atmos. sci., 21, 2580-2593, (1990)
[30] Pielke, R.A.; Cotton, W.R.; Walko, R.L.; Tremback, C.J.; Lyons, W.A.; Grasso, L.D.; Nicholls, M.E.; Moran, M.D.; Wesley, D.A.; Lee, T.J.; Copeland, J.H., A comprehensive meteorological modeling system: RAMS, Meteorol. atmos. phys., 49, 69-91, (1992)
[31] R.J. Purser, Accuracy considerations of time-splitting for models using two-time-level schemes, Mon. Wea. Rev. (2007) (in press).
[32] Saito, K.; Fujita, T.; Yamada, Y.; Ishida, J.-I.; Kumagai, Y.; Aranami, K.; Ohmori, S.; Nagasawa, R.; Kumagai, S.; Muroi, C.; Kato, T.; Eito, H.; Yamazaki, Y., The operational JMA nonhydrostatic mesoscale model, Mon. wea. rev., 134, 1266-1298, (2006)
[33] W.C. Skamarock, J.B. Klemp, J. Dudhia, D. Gill, D. Barker, W. Wang, J.G. Powers, A description of the Advanced Research WRF Version 2, NCAR Technical Note NCAR/TN-468+STR (2005).
[34] Skamarock, W.C., Evaluating mesoscale NWP models using kinetic energy spectra, Mon. wea. rev., 132, 3019-3032, (2004)
[35] Skamarock, W.C.; Klemp, J.B., The stability of time-split numerical methods for the hydrostatic and nonhydrostatic elastic equations, Mon. wea. rev., 120, 2109-2127, (1992)
[36] Skamarock, W.C.; Klemp, J.B., Adaptive grid refinement for two-dimensional and three-dimensional nonhydrostatic atmospheric flow, Mon. wea. rev., 121, 788-804, (1993)
[37] Straka, J.M.; Wilhelmson, R.B.; Wicker, L.J.; Anderson, J.R.; Droegemeier, K.K., Numerical solutions of a non-linear density current: a benchmark solution and comparisons, Int. J. numer. meth. fluids, 17, 1-22, (1993)
[38] A. Staniforth, N. Wood, Aspects of the dynamical core of a nonhydrostatic, deep-atmosphere, unified weather and climate-prediction model, J. Comput. Phys. (2007), doi:10.1016/j.jcp.2006.11.009. · Zbl 1132.86313
[39] Staniforth, A.; Côté, J., Semi-Lagrangian integration schemes for atmospheric models: a review, Mon. wea. rev., 119, 2206-2223, (1991)
[40] Tapp, M.C.; White, P.W., A non-hydrostatic mesoscale model, Quart. J. roy. meteor. soc., 102, 277-296, (1976)
[41] Thomas, S.C.; Girard, C.; Doms, G.; Schättler, U., Semi-implicit scheme for the DWD lokal-modell, Meteorol. atmos. phys., 73, 105-125, (2000)
[42] W. Wang, C. Davis, J.B. Klemp, G. Holland, M. DeMaria, Evaluation of WRF-ARW high-resolution tropical storm forecasts in the 2005 season, American Meteorological Society, in: 27th Conference on Hurricanes and Tropical Meteorology, Monterey, CA, 23-28 April 2006. Available from: <http://www.ametsoc.org>.
[43] Weisman, M.L.; Skamarock, W.C.; Klemp, J.B., The resolution dependence of explicitly modeled convective systems, Mon. wea. rev., 125, 527-548, (1997)
[44] Wicker, L.J.; Skamarock, W.C., Time splitting methods for elastic models using forward time schemes, Mon. wea. rev., 130, 2088-2097, (2002)
[45] Xue, M.; Droegemeier, K.K.; Wong, V., The advanced regional prediction system (ARPS) - a multiscale nonhydrostatic atmospheric simulation and prediction tool. part I. model dynamics and verification, Meteor. atmos. phys., 75, 161-193, (2000)
[46] Yeh, K.-S.; Côté, J.; Gravel, S.; Méthot, A.; Patoine, A.; Roch, M.; Staniforth, A., The CMC-MRB global environmental multiscale (GEM) model. part III. nonhydrostatic formulation, Mon. wea. rev., 130, 339-356, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.