×

zbMATH — the first resource for mathematics

Generalized Green functions and unipotent classes for finite reductive groups. II. (English) Zbl 1133.20036
Summary: This paper is concerned with the problem of the determination of unknown scalars involved in the algorithm of computing the generalized Green functions of reductive groups \(G\) over a finite field. In the previous paper [Nagoya Math. J. 184, 155-198 (2006; Zbl 1128.20033)], we have treated the case where \(G=\text{SL}_n\). In this paper, we determine the scalars in the case where \(G\) is a classical group \(\text{Sp}_{2n}\) or \(\text{SO}_N\) for arbitrary characteristic.

MSC:
20G05 Representation theory for linear algebraic groups
20G40 Linear algebraic groups over finite fields
PDF BibTeX Cite
Full Text: DOI Euclid arXiv
References:
[1] J. Dieudonné, La Géométrie des Groupes Classiques, Springer-Verlag, 1971.
[2] G. Lusztig, Intersection cohomology complexes on a reductive group , Invent. Math., 75 (1984), 205-272. · Zbl 0547.20032
[3] G. Lusztig, Character sheaves, I , Adv. in Math., 56 (1985), 193-237, II , Adv. in Math., 57 (1985), 226-265, III , Adv. in Math., 57 (1985), 266-315, IV , Adv. in Math., 59 (1986), 1-63, \emphV, Adv. in Math., 61 (1986), 103-155. · Zbl 0586.20018
[4] G. Lusztig and N. Spaltenstein, On the generalized Springer correspondence for classical groups , Advanced Studies in Pure Math. Vol. 6 (1985), pp. 289-316. · Zbl 0579.20035
[5] T. Shoji, On the Green polynomials of classical groups , Invent. Math., 74 (1983), 237-267. · Zbl 0525.20027
[6] T. Shoji, Generalized Green functions and unipotent classes for finite reductive groups, I , Nagoya Math. J., 184 (2006), 155-198. · Zbl 1128.20033
[7] N. Spaltenstein, Classes Unipotentes et Sous-groupes de Borel, Lecture Note in Math. 946 , Springer-Verlag, 1982. · Zbl 0486.20025
[8] N. Spaltenstein, On the generalized Springer correspondence for exceptional groups , Advanced Studies in Pure Math. Vol. 6 (1985), pp. 317-338. · Zbl 0574.20029
[9] T. A. Springer and R. Steinberg, Conjugacy classes , Seminar on Algebraic Groups and Related Finite Groups, Lect. Note in Math. 131 , Springer-Verlag (1970), pp. 167-266.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.