×

Solving the generalized Burgers-Huxley equation using the Adomian decomposition method. (English) Zbl 1133.65083

Summary: A convergence proof of the Adomian decomposition method (ADM) applied to the generalized nonlinear Burgers-Huxley equation is presented. The decomposition scheme obtained from the ADM yields an analytical solution in the form of a rapidly convergent series. The direct symbolic-numeric scheme is shown to be efficient and accurate.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Adomian, G., A review of the decomposition method in applied mathematics, J. math. anal. appl., 135, 501-544, (1988) · Zbl 0671.34053
[2] Deeba, E.Y.; Khuri, S.A., A decomposition method for solving the nonlinear Klein-Gordon equation, J. comput. phys., 124, 442-448, (1996) · Zbl 0849.65073
[3] I. Hashim, Adomian decomposition method for solving BVPs for fourth-order integro-differential equations, J. Comput. Appl. Math. (in press), doi:10.1016/j.cam.2005.05.034 · Zbl 1093.65122
[4] Wazwaz, A.M., A new algorithm for solving differential equation of Lane-Emden type, Appl. math. comput., 118, 287-310, (2001) · Zbl 1023.65067
[5] Vadasz, P.; Olek, S., Convergence and accuracy of adomian’s decomposition method for the solution of Lorenz equation, Int. J. heat mass transfer, 43, 1715-1734, (2000) · Zbl 1015.76075
[6] Chang, M.-H., A decomposition solution for fins with temperature dependent surface heat flux, Int. J. heat mass transfer, 48, 1819-1824, (2005) · Zbl 1189.76519
[7] Sun, Y.-P.; Scott, K., An analysis of the influence of mass transfer on porous electrode performance, Chem. eng. J., 102, 83-91, (2004)
[8] Abdou, M.A., Adomian decomposition method for solving the telegraph equation in charged particle transport, J. quant. spectrosc. radiat., 95, 407-414, (2005)
[9] Sanchez, F.; Abbaoui, K.; Cherruault, Y., Beyond the thin-sheet approximation: adomian’s decomposition, Opt. commun., 173, 397-401, (2000)
[10] Biazar, J.; Tango, M.; Babolian, E.; Islam, R., Solution of the kinetic modeling of lactic acid fermentation using Adomian decomposition method, Appl. math. comput., 144, 433-439, (2003) · Zbl 1048.92013
[11] Adomian, G., Solving frontier problems of physics: the decomposition method, (1994), Kluwer Academic Boston · Zbl 0802.65122
[12] Ismail, H.N.A.; Raslan, K.; Abd-Rabboh, A.A., Adomian decomposition method for Burgers-Huxley and burgers – fisher equations, Appl. math. comput., 159, 291-301, (2004) · Zbl 1062.65110
[13] Satsuma, J., Topics in soliton theory and exactly solvable nonlinear equations, (1987), World Scientific Singapore
[14] Wang, X.Y.; Zhu, Z.S.; Lu, Y.K., Solitary wave solutions of the generalised Burgers-Huxley equation, J. phys. A, 23, 271-274, (1990) · Zbl 0708.35079
[15] Kaya, D.; El-Sayed, S.M., A numerical implementation of the decomposition method for the lienard equation, Appl. math. comput., 171, 1095-1103, (2005) · Zbl 1091.65071
[16] Babolian, E.; Javadi, Sh., New method for calculating Adomian polynomials, Appl. math. comput., 153, 253-259, (2004) · Zbl 1055.65068
[17] Choi, H.-W.; Shin, J.-G., Symbolic implementation of the algorithm for calculating Adomian polynomials, Appl. math. comput., 146, 257-271, (2003) · Zbl 1033.65036
[18] Ngarhasta, N.; Some, B.; Abbaoui, K.; Cherruault, Y., New numerical study of Adomian method applied to a diffusion model, Kybernetes, 31, 61-75, (2002) · Zbl 1011.65073
[19] Cherruault, Y., Convergence of adomian’s method, Kybernetes, 18, 31-38, (1989) · Zbl 0697.65051
[20] Mavoungou, T.; Cherruault, Y., Convergence of Adomian method and applications to non-linear partial differential equation, Kybernetes, 21, 13-25, (1992) · Zbl 0801.35007
[21] Mavoungou, T.; Cherruault, Y., Numerical study of fisher’s equation by adomian’s method, Math. comput. modelling, 19, 89-95, (1994) · Zbl 0799.65099
[22] Inc, M., On numerical soliton solution of the Kaup-Kupershmidt equation and convergence analysis of the decomposition method, Appl. math. comput., 172, 72-85, (2006) · Zbl 1088.65089
[23] Kaya, D.; El-Sayed, S.M., An application of the decomposition method for the generalized KdV and RLW equations, Chaos solitons fractals, 17, 869-877, (2003) · Zbl 1030.35139
[24] Kaya, D.; El-Sayed, S.M., On a generalized fifth order KdV equations, Phys. lett. A, 310, 44-51, (2003) · Zbl 1011.35114
[25] Kaya, D.; El-Sayed, S.M., A numerical simulation and explicit solutions of the generalized burgers – fisher equation, Appl. math. comput., 152, 403-413, (2004) · Zbl 1052.65098
[26] Kaya, D.; El-Sayed, S.M., A numerical solution of the Klein-Gordon equation and convergence of the decomposition method, Appl. math. comput., 156, 341-353, (2004) · Zbl 1084.65101
[27] Kaya, D.; Inan, I.E., A convergence analysis of the ADM and an application, Appl. math. comput., 161, 1015-1025, (2005) · Zbl 1068.65119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.