zbMATH — the first resource for mathematics

Optimal multiple stopping and valuation of swing options. (English) Zbl 1133.91499
Summary: The connection between optimal stopping of random systems and the theory of the Snell envelop is well understood, and its application to the pricing of American contingent claims is well known. Motivated by the pricing of swing contracts (whose recall components can be viewed as contingent claims with multiple exercises of American type) we investigate the mathematical generalization of these results to the case of possible multiple stopping. We prove existence of the multiple exercise policies in a fairly general set-up. We then concentrate on the Black-Scholes model for which we give a constructive solution in the perpetual case, and an approximation procedure in the finite horizon case. The last two sections of the paper are devoted to numerical results. We illustrate the theoretical results of the perpetual case, and in the finite horizon case, we introduce numerical approximation algorithms based on ideas of the Malliavin calculus.

91G20 Derivative securities (option pricing, hedging, etc.)
60G40 Stopping times; optimal stopping problems; gambling theory
Full Text: DOI
[1] DOI: 10.3150/bj/1072215199 · Zbl 1042.60021 · doi:10.3150/bj/1072215199
[2] Barbieri A., FEA Tech. Rep. (2002)
[3] Bosq D., Non-Parametric Statistics for Stochastic Processes (1998) · Zbl 0902.62099 · doi:10.1007/978-1-4612-1718-3
[4] DOI: 10.1007/s00780-003-0109-0 · Zbl 1051.60061 · doi:10.1007/s00780-003-0109-0
[5] DOI: 10.1016/j.spa.2004.01.001 · Zbl 1071.60059 · doi:10.1016/j.spa.2004.01.001
[6] Cairoli R., Sequential Stochastic Optimization (1996) · Zbl 0856.62070 · doi:10.1002/9781118164396
[7] Carmona R., Math. Oper. Res (2007)
[8] DOI: 10.1016/S0167-6687(96)00004-2 · Zbl 0894.62109 · doi:10.1016/S0167-6687(96)00004-2
[9] DOI: 10.1007/s007800200071 · Zbl 1039.91020 · doi:10.1007/s007800200071
[10] Clewlow L., Energy Power Risk Manage (2002)
[11] DOI: 10.1214/105051605000000043 · Zbl 1125.91050 · doi:10.1214/105051605000000043
[12] El Karoui N., Lect. Notes in Math 876 pp 73– (1981)
[13] DOI: 10.1007/PL00013529 · Zbl 0973.60061 · doi:10.1007/PL00013529
[14] DOI: 10.1214/aoms/1177698595 · Zbl 0189.18301 · doi:10.1214/aoms/1177698595
[15] DOI: 10.1111/j.0960-1627.2004.00190.x · Zbl 1090.91051 · doi:10.1111/j.0960-1627.2004.00190.x
[16] DOI: 10.1287/mnsc.1040.0240 · Zbl 1232.90340 · doi:10.1287/mnsc.1040.0240
[17] Karatzas I., Mathematical Finance (2000)
[18] Lamberton D., Introduction to Stochastic Calculus Applied to Finance (1996) · Zbl 0949.60005
[19] P. L.Lions, and H.Regnier(2001 ): Calcul du prix et des sensibilites d’une option americaine par une methode de Monte Carlo , Univ. Paris Dauphine Tech. Report.
[20] DOI: 10.1093/rfs/14.1.113 · Zbl 1386.91144 · doi:10.1093/rfs/14.1.113
[21] Martini C., INRIA, Tech. Rep 3767 (1999)
[22] Meinshausen N., Math. Finance (2004)
[23] Neveu J., Discrete Time Martingales (1972) · Zbl 0235.60010
[24] DOI: 10.2307/2331121 · doi:10.2307/2331121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.