Long, Yao; He, Bin; Rui, Weiguo; Chen, Can Compacton-like and kink-like waves for a higher-order wave equation of Korteweg-de Vries type. (English) Zbl 1134.35096 Int. J. Comput. Math. 83, No. 12, 959-971 (2006). The authors deal with the generalized KdV equation considered by A. S. Fokas [On a class of physically important integrable equations, Physica D 87, 145–150 (1995)], written as \[ v_{t} - \tfrac{3}{2} \beta \rho_{2} v_{xxt} + \beta (1 - \tfrac{3}{2} \rho_{2}) v_{xxx} + \alpha v v_{x} - \tfrac{1}{2} \alpha \beta \rho_{2} (v v_{xxx} + 2 v_{x} v_{xx}) = 0. \] Implicit compacton-like and kink-like solutions are obtained as travelling waves \(v = v(x - c t)\) passing through singular points. Results are tested by numerical integration. Reviewer: Michal Marvan (Opava) Cited in 8 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems 34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations Keywords:generalized KdV equation; compacton-like wave; kink-like wave PDF BibTeX XML Cite \textit{Y. Long} et al., Int. J. Comput. Math. 83, No. 12, 959--971 (2006; Zbl 1134.35096) Full Text: DOI OpenURL References: [1] DOI: 10.1063/1.1514387 · Zbl 1060.35127 [2] DOI: 10.1016/0167-2789(95)00133-O · Zbl 1194.35363 [3] DOI: 10.1016/S0960-0779(01)00211-9 · Zbl 1068.76011 [4] DOI: 10.1016/j.chaos.2004.04.027 · Zbl 1069.35075 [5] DOI: 10.1016/j.chaos.2004.12.027 · Zbl 1070.35062 [6] DOI: 10.1142/S0218127405013629 · Zbl 1092.74543 [7] DOI: 10.1016/j.chaos.2005.04.040 · Zbl 1082.35044 [8] DOI: 10.1103/PhysRevLett.70.564 · Zbl 0952.35502 [9] Byrd P. F., Handbook of Elliptic Integrals for Engineers and Scientists (1971) · Zbl 0213.16602 [10] Guckenheimer J., Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields (1983) · Zbl 0515.34001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.