zbMATH — the first resource for mathematics

An interior global method for nonlinear systems with simple bounds. (English) Zbl 1134.90050
Summary: The problem of solving a nonlinear system of equations subject to simple bounds is addressed and a new globally convergent method is developed and analyzed. The globalization process employs a trust-region strategy and possibly bends the trust-region solution by a new interior point modification of the projection onto the feasible set. The steps used are obtained by a combination of the chopped Cauchy step and the possibly modified trust-region solution. Thus, strictly feasible iterates are formed. The proposed method is shown to be globally and fast locally convergent. The practical viability of our approach is shown by a concrete implementation and numerical experience on well-known problems. The obtained results indicate that the method works well in practice.

90C51 Interior-point methods
65K05 Numerical mathematical programming methods
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
PDF BibTeX Cite
Full Text: DOI
[1] DOI: 10.1016/0098-1354(91)85011-I
[2] DOI: 10.1080/10556789508805619
[3] DOI: 10.1137/S0036144595285963 · Zbl 0891.90158
[4] Floudas C. A., Nonconvex Optimization and its Applications 33 (1999)
[5] Hock, W. and Schittkowski, K. 1981. ”Test examples for nonlinear programming codes. Lecture Notes in Economics and Mathematical Systems”. Vol. 187, Berlin, Heidelberg, Germany: Springer-Verlag. · Zbl 0452.90038
[6] DOI: 10.1016/S0098-1354(01)00790-6
[7] Wood A. J., Power Generation, Operation and Control (1996)
[8] Kanzow C., Complementarity: Applications, Algorithms and Extensions pp 179– (2001)
[9] DOI: 10.1007/BF02592210 · Zbl 0855.90128
[10] DOI: 10.1016/S0168-9274(02)00170-8 · Zbl 1018.65067
[11] DOI: 10.1137/S1052623494276208 · Zbl 0957.65058
[12] Fletcher R., High Performance Algorithms and Software for Nonlinear Optimization pp 259– (2003)
[13] DOI: 10.1007/PL00005460 · Zbl 0992.65070
[14] Kanzow C., Journal of Computational Applied Mathematics 173 pp 321– (2005)
[15] Kozakevich D. N., Computational and Applied Mathematics 16 pp 215– (1997)
[16] DOI: 10.1023/B:JOTA.0000043997.42194.dc · Zbl 1069.65055
[17] DOI: 10.1023/B:JOTA.0000025712.43243.eb · Zbl 1140.65331
[18] DOI: 10.1137/S1052623499356344 · Zbl 1010.90085
[19] DOI: 10.1137/0806023 · Zbl 0855.65063
[20] DOI: 10.1007/s101070050107 · Zbl 0945.49023
[21] Conn A. R., SMPS/SIAM Series on Optimization 1 pp 959– (2000)
[22] DOI: 10.1007/b98874 · Zbl 0930.65067
[23] Kelley C. T., Frontiers in Applied Mathematics, SIAM 16 pp 165– (1995)
[24] Ortega J. M., Iterative Solution of Nonlinear Equations in Several Variables (1970) · Zbl 0241.65046
[25] Dennis J. E., Numerical Methods for Unconstrained Optimization and Nonlinear Equations (1983) · Zbl 0579.65058
[26] DOI: 10.1023/B:COAP.0000018878.95983.4e · Zbl 1056.90128
[27] Bellavia S., Recent Advances in Computational Science and Engineering pp 41– (2002)
[28] DOI: 10.1137/0317004 · Zbl 0407.90083
[29] DOI: 10.1007/PL00011386
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.