×

Subthreshold oscillations in a map-based neuron model. (English) Zbl 1134.92314

Summary: Self-sustained subthreshold oscillations in a discrete-time model of neuronal behavior are considered. We discuss bifurcation scenarios explaining the birth of these oscillations and their transformation into tonic spikes. Specific features of these transitions caused by the discrete-time dynamics of the model and the influence of external noise are discussed.

MSC:

92C20 Neural biology
92B20 Neural networks for/in biological studies, artificial life and related topics
37N25 Dynamical systems in biology
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Chialvo, D. R.; Apkarian, A. V., J. Stat. Phys., 70, 375 (1993)
[2] Chialvo, D. R., Chaos Solitons Fractals, 5, 461 (1995)
[3] Cazelles, B.; Courbage, M.; Rabinovich, M., Europhys. Lett., 56, 504 (2001)
[4] Rulkov, N. F., Phys. Rev. Lett., 86, 183 (2001)
[5] Andreev, K. V.; Krasichkov, L. V., Izv. Akad. Nauk Fiz., 66, 1777 (2002)
[6] E.M. Izhikevich, F.C. Hoppensteadt, Bursting mappings, 2003, submitted for publication; E.M. Izhikevich, F.C. Hoppensteadt, Bursting mappings, 2003, submitted for publication · Zbl 1091.37524
[7] Rulkov, N. F., Phys. Rev. E, 65, 041922 (2002)
[8] Rulkov, N. F.; Bazhenov, M. V.; Shilnikov, A. L., (Proceedings of International Symposium on Topical Problems of Nonlinear Wave Physics, Russia (September 2003))
[9] Shilnikov, A. L.; Rulkov, N. F., Int. J. Bifur. Chaos, 13, 11 (2003)
[10] Llinás, R., Science, 242, 1654 (1988)
[11] Llinás, R.; Yarom, Y., J. Physiol., 315, 549 (1981)
[12] Llinás, R.; Yarom, Y., J. Physiol., 376, 163 (1986)
[13] Braun, H. A.; Wissing, H.; Schäfer, K.; Hirsch, M. C., Nature, 367, 270 (1994)
[14] Heinz, M.; Schäfer, K.; Braun, H. A., Brain Res., 521, 289 (1990)
[15] Makarov, V. A.; Nekorkin, V. I.; Velarde, M. G., Phys. Rev. Lett., 86, 3431 (2001)
[16] Velarde, M. G.; Nekorkin, V. I.; Kazantsev, V. B.; Makarenko, V. I.; Llinás, R., Neural Networks, 15, 5 (2002)
[17] Arnold, V. I.; Afrajmovich, V. S.; Ilyashenko, Yu. S.; Shilnikov, L. P., Bifurcation Theory, Dyn. Sys. V, Encyclopaedia Mathematics Sciences (1994), Springer: Springer Berlin
[18] Fenichel, N., J. Differential Equations, 31, 53 (1979) · Zbl 0476.34034
[19] Chik, D. T.W; Wang, Y.; Wang, Z. D., Phys. Rev. E, 64, 021913 (2001)
[20] Volkov, E. I.; Ullner, E.; Zaikin, A. A.; Kurths, J., Phys. Rev. E, 68, 026214 (2003)
[21] Hilborn, R. C.; Erwin, R. J., Phys. Lett. A, 322, 19 (2004)
[22] Hilborn, R. C., Am. J. Phys., 72, 528 (2004)
[23] Mira, C.; Gardini, L.; Barugola, A.; Cathala, J. C., Chaotic Dynamics in Two-Dimenional Noninvertable Maps (1996), World Scientific: World Scientific Singapore
[24] Shilnikov, A. L.; Shilnikov, L. P.; Turaev, D. V., J. Bifur. Chaos, 14, 7 (2004)
[25] Shilnikov, L.; Shilnikov, A.; Turaev, D.; Chua, L., Methods of Qualitative Theory in Nonlinear Dynamics. Part I (1998), World Scientific: World Scientific Singapore · Zbl 0941.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.