×

zbMATH — the first resource for mathematics

On fractional adaptive control. (English) Zbl 1134.93356
Summary: Introducing fractional operators in the adaptive control loop, and especially in Model Reference Adaptive Control (MRAC), has proven to be a good mean for improving the plant dynamics with respect to response time and disturbance rejection. The idea of introducing fractional operators in adaptation algorithms is very recent and needs to be more established, that is why many research teams are working on the subject. Previously, some authors have introduced a fractional model reference in the adaptation scheme, and then fractional integration has been used to deal directly with the control rule. Our original contribution in this paper is the use of a fractional derivative feedback of the plant output, showing that this scheme is equivalent to the fractional integration, one with a certain benefit action on the system dynamical behaviour and a good robustness effect. Numerical simulations are presented to show the effectiveness of the proposed fractional adaptive schemes.

MSC:
93C40 Adaptive control/observation systems
93C10 Nonlinear systems in control theory
26A33 Fractional derivatives and integrals
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Van Der Ziel, A., ’On the noise spectra of semiconductor noise and of flicker effects’, Physica 16, 1950, 359–372.
[2] Duta, P. and Horn, P. M., ’Low frequency fluctuations in solids: 1/f noise’, Review of Modern Physics 53(3), July 1981.
[3] El-Sayed, A. M. A. and Gaafar, F. M., ’Fractional calculus and some intermediate physical processes’, Applied Mathematics and Computation 144, 2003, 117–126. · Zbl 1049.35002
[4] Loiseau, J. J. and Mounier, H., ’Stabilisation de l’équation de la chaleur commandée en flux’, ESAIM: Proceedings 1998, 131–144. · Zbl 0913.73052
[5] Oustaloup, A., La dérivation non entière, 1995, Hermès, Paris.
[6] Padovan, J. and Sawicki, J. T., ’Nonlinear vibrations of fractionally damped systems’, Nonlinear Dynamics 16, 1998, 321–336. · Zbl 0929.70017
[7] Hartley, T. T. and Lorenzo, C. F., ’Dynamics and control of initialized fractional order systems’, Nonlinear Dynamics 29, 2002, 201–233. · Zbl 1021.93019
[8] Podlubny, I., ’Fractional-order systems and PI{\(\lambda\)}D{\(\mu\)}-controllers’, IEEE Transaction on Automatic Control 44(1), 1999, 208–214. · Zbl 1056.93542
[9] Sun, H. and Onara, B., ’A unified approach to represent metal electrode interface’, IEEE Transactions on Biomedical Engineering 31, July 1984.
[10] Ladaci, S. and Charef, A., ’MIT adaptive rule with fractional Integration’, in Proceedings of CESA’2003 IMACS Multiconference Computational Engineering in Systems Applications, Lille-France, July 9–11, 2003. · Zbl 1134.93356
[11] Vinagre, B. M., Petras, I., Podlubny, I., and Chen, Y. Q., ’Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control’, Nonlinear Dynamics 29, 2002, 269–279. · Zbl 1031.93110
[12] Sun, H. and Charef, A., ’Fractal system – a time domain approach’, Annals of Biomedical Engineering 18, 1990, 597–621.
[13] Brin, I. A., ’On the stability of certain systems with distributed and lumped parameters’, Automatic Remote Control 23, 1962, 798–807. · Zbl 0122.32805
[14] Charef, A., Djouambi, A., and Sun, H., ’Fractional order feedback control systems’, in Proceedings of the 4th JIEEEC, Jordan, April 2001.
[15] Lorenzo, C. F. and Hartley, T. T., ’Variable order and distributed order fractional operators’, Nonlinear Dynamics 29, 2002, 57–98. · Zbl 1018.93007
[16] Oldham, K. B. and Spanier, J., The Fractional Calculus, Academic Press, New York, 1974. · Zbl 0292.26011
[17] Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999. · Zbl 0924.34008
[18] Srivastava, H. M. and Saxena, R. K., ’Operators of fractional integration and their applications’, Applied Mathematics and Computation 118, 2001, 1–52. · Zbl 1022.26012
[19] Chen, Y. Q. and Vinagre, B. M., ’A new IIR-type digital fractional order differentiator’, Signal Processing 83, 2003, 2359–2365. · Zbl 1145.93423
[20] Diethelm, K., ’An algorithm for the numerical solution of differential equations of fractional order’, Electronic Transactions on Numerical Analysis 5, 1997, 1–6. · Zbl 0890.65071
[21] Edwards, J. T., Ford, N. J., and Simpson, A. C., ’The numerical solution of linear multi-term fractional differential equations: Systems of equations’, Journal of Computational and Applied Mathematics 148, 2002, 401–418. · Zbl 1019.65048
[22] Ostalczyk, P., ’Fundamental properties of the fractional-order discrete-time integrator’, Signal Processing 83, 2003, 2367–2376. · Zbl 1145.94368
[23] Podlubny, I., Petras, I., Vinagre, B. M., O’leary, P., and Dorcak, L., ’Analogue realisations of fractional-order controllers’, Nonlinear Dynamics 29, 2002, 281–296. · Zbl 1041.93022
[24] Diethelm, K., Ford, N. J., and Freed A. D., ’A predictor-corrector approach for numerical solution of fractional differential equations’, Nonlinear Dynamics 29, 2002, 3–22. · Zbl 1009.65049
[25] Vinagre, B. M., Chen, Y. Q., and Petras, I., ’Two direct Tustin discretization methods for fractional-order differentiator/integrator’, Journal of the Franklin Institute 340, 2003, 349–362. · Zbl 1051.93031
[26] Charef, A., Sun, H. H., Tsao, Y. Y., and Onaral, B., ’Fractal system as represented by singularity function’, IEEE Transactions on Automatic Control 37, 1992, 1465–1470. · Zbl 0825.58027
[27] Astrom, K. J. and Wittenmark, B., Adaptive Control, Addison-Wesley, MA, 1995.
[28] Landau, Y. D., Adaptive Control: The Model Reference Approach, Marcel Dekker, New York, 1979. · Zbl 0475.93002
[29] Naceri, F., Lakhdari, N., and Sellami, S., Théorie de la Commande Adaptative, Batna University Press, Algeria, 1998.
[30] Mathieu, B., Melchior, P., Oustaloup, A., and Ceyral, Ch., ’Fractional differentiation for edge detection’, Signal Processing 83, 2003, 2421–2432. · Zbl 1145.94309
[31] Sawicky, J. T. and Padovan, J., ’Frequency driven phasic shifting and elastic-hysteretic partitioning properties of fractional mechanical system representation schemes’, Journal of the Franklin Institute 336, Pergamon, 1999, 423–433. · Zbl 1052.74522
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.