×

zbMATH — the first resource for mathematics

Some global synchronization criteria for coupled delay-systems via unidirectional linear error feedback approach. (English) Zbl 1135.34341
The goal of this paper is to develop some simple but generic criteria for the global synchronization of two coupled general systems with time delay, along with a simple configuration for the corresponding implementation. Some simple generic conditions of global synchronization of two coupled systems with time delay are derived.

MSC:
34K45 Functional-differential equations with impulses
37N35 Dynamical systems in control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pecora, L.M.; Carroll, T.L., Synchronization in chaotic systems, Phys. rev. lett., 64, 8, 821-824, (1990) · Zbl 0938.37019
[2] Carroll, T.L.; Pecora, L.M., Synchronization chaotic circuits, IEEE trans. circ. syst., 38, 4, 453-456, (1991)
[3] Chen, G.; Dong, X., From chaos to order: methodologies, perspectives and applications, (1998), World Scientific Singapore
[4] Suykens, J.A.K.; Yang, T.; Chua, L.O., Impulsive synchronization of chaotic lur’e systems by measurement feedback, Int. J. bifurcat. chaos, 8, 6, 1371-1381, (1998) · Zbl 0936.93027
[5] Ushio, T., Synthesis of synchronized chaotic systems based on observers, Int. J. bifurcat. chaos, 9, 3, 541-546, (1999) · Zbl 0941.93533
[6] Blazejczky-Okolewska, B.; Brindley, J.; Czolczynski, K.; Kapitaniak, T., Antiphase synchronization of chaos by noncontinuous coupling: two impacting oscillators, Chaos, solitons & fractals, 12, 10, 1823-1826, (2001) · Zbl 0994.37044
[7] Bai, E.W.; Lonngren, K.E.; Sprott, J.C., On the synchronization of a class of electronic circuits that exhibit chaos, Chaos, solitons & fractals, 13, 7, 1515-1521, (2002) · Zbl 1005.34041
[8] Gong, X.; Lai, C.H., On the synchronization of different chaotic oscillators, Chaos, solitons & fractals, 11, 8, 1231-1235, (2000) · Zbl 0955.34033
[9] Krawiecki, A.; Sukiennicki, A., Generalizations of the concept of marginal synchronization of chaos, Chaos, solitons & fractals, 11, 9, 1445-1458, (2000) · Zbl 0982.37022
[10] Liao, T.L.; Tsai, S.H., Adaptive synchronization of chaotic systems and its application to secure communications, Chaos, solitons & fractals, 11, 9, 1387-1396, (2000) · Zbl 0967.93059
[11] Sun, J.T.; Zhang, Y.P.; Wu, Q.D., Impulsive control for the stabilization and synchronization of Lorenz systems, Phys. lett. A, 298, 2, 153-160, (2002) · Zbl 0995.37021
[12] Sun, J.T.; Zhang, Y.P.; Wu, Q.D., Less conservative conditions for asymptotic stability of impulsive control systems, IEEE trans. AC, 48, 5, (2003)
[13] Sun JT, Zhang YP. Impulsive control of a nuclear spin generator. J Comput Appl Math, in press
[14] Kapitaniak, T.; Sekieta, M.; Ogorzalek, M., Monotone synchronization of chaos, Int. J. bifurcat. chaos, 6, 1, 211-217, (1996) · Zbl 0870.94003
[15] Grassi, G.; Mascolo, S., Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal, IEEE trans. circ. syst. I, 44, 10, 1011-1014, (1997)
[16] Grassi, G.; Mascolo, S., Synchronizing high dimensional chaotic systems via eigenvalue placement with application to cellular neural networks, Int. J. bifurcat. chaos, 9, 4, 705-711, (1999) · Zbl 0980.37032
[17] Liu, F.; Ren, Y.; Shan, X.; Qiu, Z., A linear feedback synchronization theorem for a class of chaotic systems, Chaos, solitons & fractals, 13, 4, 723-730, (2002) · Zbl 1032.34045
[18] Lü, J.; Zhou, T.; Zhang, S., Chaos synchronization between linearly coupled chaotic systems, Chaos, solitons & fractals, 14, 4, 529-541, (2002) · Zbl 1067.37043
[19] Jiang, G.P.; Tang, K.S., A global synchronization criterion for coupled chaotic systems via unidirectional linear error feedback approach, Int. J. bifurcat. chaos, 12, 10, 2239-2253, (2002) · Zbl 1052.34053
[20] Jiang, G.P.; Tang, K.S.; Chen, G.R., A simple global synchronization criterion for coupled chaotic systems, Chaos, solitons & fractals, 15, 925-935, (2003) · Zbl 1065.70015
[21] Sun JT, Zhang YP. Some simple global synchronization criterions for coupled time-varying chaotic systems to appear Chaos, Solitons & Fractals.
[22] Sun, J.T.; Zhang, Y.P.; Liu, Y.Q.; Deng, F.Q., Exponential stability of interval dynamical system with multidelay, Appl math mech, 31, 1, 95-99, (2002) · Zbl 1141.34347
[23] Tarbouriech, S.; Silva, J.M.G., Synthesis of controllers for continuous time delay systems with saturating controls via LMI’s, IEEE trans. AC, 45, 1, 105-111, (2000) · Zbl 0978.93062
[24] Oucheriah, S., Exponential stabilization of class of uncertain time-delay systems with bounded controllers, IEEE trans. CAS, 47, 4, 606-609, (2000)
[25] Jesus, L.R.; Pearson, A.E., Output feedback stabilizing controller for time-delay systems, Automatica, 35, 613-617, (2000) · Zbl 0967.93536
[26] Boyd, S.; Ghaoui, L.; Feron, E.L.; Balakrishnan, E., Linear matrix inequalities in system and control theory, (1994), SIAM Philadelphia, PA
[27] Curran, P.F.; Suykens, J.A.K.; Chua, L.O., Absolute stability theory and master – slave synchronization, Int. J. bifurcat. chaos, 7, 12, 2891-2896, (1997) · Zbl 0911.93044
[28] Yalcin, M.E.; Suykens, J.A.K.; Vandewalle, Master – slave synchronization of lur’e systems with time-delay, Int. J. bifurcat. chaos, 11, 6, 1707-1722, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.