×

Modified rational Legendre approach to laminar viscous flow over a semi-infinite flat plate. (English) Zbl 1135.76040

Summary: We propose a numerical method for solving the classical Blasius equation. The Blasius equation is a third-order nonlinear ordinary differential equation, which arises in the problem of two-dimensional laminar viscous flow over a semi-infinite flat plane. The approach is based on a modified rational Legendre tau method. We present operational matrices for the derivative and product of modified rational Legendre functions. These matrices together with tau method are utilized to reduce the solution of Blasius equation to the solution of a system of algebraic equations. The numerical evaluation demonstrates the validity of the method. A comparison is made with existing results.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
PDFBibTeX XMLCite

References:

[1] Funaro, D.; Kavian, O.: Approximation of some diffusion evolution equations in unbounded domains by Hermite function, Math comput 57, 597-619 (1990) · Zbl 0764.35007 · doi:10.2307/2938707
[2] Guo, B. Y.: Error estimation of Hermite spectral method for nonlinear partial differential equations, Math comput 68, 1067-1078 (1999) · Zbl 0918.65069 · doi:10.1090/S0025-5718-99-01059-5
[3] Guo, B. Y.; Shen, J.: Laguerre – Galerkin method for nonlinear partial differential equations on a semi-infinite interval, Numer math 86, 635-654 (2000) · Zbl 0969.65094 · doi:10.1007/s002110000168
[4] Shen, J.: Stable and efficient spectral methods in unbounded domains using Laguerre functions, SIAM J numer anal 38, 1113-1133 (2000) · Zbl 0979.65105 · doi:10.1137/S0036142999362936
[5] Guo, B. Y.: Jacobi spectral approximation and its applications to differential equations on half line, J comput math 18, 95-112 (2000) · Zbl 0948.65071
[6] Christov, C. I.: A complete orthogonal system of functions in \(l2( - \infty ,\infty )\) space, SIAM J appl math 42, 1337-1344 (1982) · Zbl 0562.33009 · doi:10.1137/0142093
[7] Boyd, J. P.: Orthogonal rational functions on a semi-infinite interval, J comput phys 70, 63-88 (1987) · Zbl 0614.42013 · doi:10.1016/0021-9991(87)90002-7
[8] Boyd, J. P.: Spectral methods using rational basis functions on an infinite interval, J comput phys 69, 112-142 (1987) · Zbl 0615.65090 · doi:10.1016/0021-9991(87)90158-6
[9] Guo, B. Y.; Shen, J.; Wang, Z. Q.: A rational approximation and its applications to differential equations on the half line, J sci comput 15, 117-147 (2000) · Zbl 0984.65104 · doi:10.1023/A:1007698525506
[10] Guo, B. Y.; Shen, J.: On spectral approximations using modified Legendre rational functions: application to Korteweg – de Vries equation on the half line, Indiana univ math J 50, 181-203 (2001) · Zbl 0992.65111
[11] Boyd, J. P.: The optimization of convergence for Chebyshev polynomial methods in an unbounded domain, J comput phys 45, 43-79 (1982) · Zbl 0488.65035 · doi:10.1016/0021-9991(82)90102-4
[12] Blasius, H.: Grenzschichten in flüssigkeiten mit kleiner reibung, Z math phys 56, 1-37 (1908) · JFM 39.0803.02
[13] Liao, S. J.: A kind of approximate solution technique which does not depend upon small parameters (II) an application in fluid mechanics, Int J non-linear mech 32, 815-822 (1997) · Zbl 1031.76542 · doi:10.1016/S0020-7462(96)00101-1
[14] Liao, S. J.: An explicit, totally analytic solution of laminar viscous flow over a semi-infinite flat plate, Commun nonlinear sci numer simul 3, 53-57 (1998) · Zbl 0922.34012 · doi:10.1016/S1007-5704(98)90061-2
[15] He, J. H.: Approximate analytical solution of Blasius equation, Commun nonlinear sci numer simul 4, 75-78 (1999) · Zbl 0932.34005 · doi:10.1016/S1007-5704(99)90063-1
[16] He, J. H.: A simple perturbation approach to Blasius equation, Appl math comput 140, 217-222 (2003) · Zbl 1028.65085 · doi:10.1016/S0096-3003(02)00189-3
[17] He, J. H.: Comparison of homotopy perturbation method and homotopy analysis method, Appl math comput, 527-539 (2004) · Zbl 1062.65074 · doi:10.1016/j.amc.2003.08.008
[18] Abbasbandy, S.: A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method, Chaos, soliton & fractals 31, 257-260 (2007)
[19] He, J. H.: A new approach to non-linear partial differential equations, Commun nonlinear sci numer simul 4, 230-235 (1997)
[20] He, J. H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput methods appl mech eng 167, 57-68 (1998) · Zbl 0942.76077 · doi:10.1016/S0045-7825(98)00108-X
[21] He, J. H.: Approximate solution of nonlinear differential equations with convolution product nonlinearities, Comput methods appl mech eng 167, 69-73 (1998) · Zbl 0932.65143 · doi:10.1016/S0045-7825(98)00109-1
[22] He, J. H.: Variational iteration method – a kind of non-linear analytical techniques: some examples, Int J non-linear mech 34, 699-708 (1999) · Zbl 1342.34005
[23] He, J. H.: Variational iteration method for autonomous ordinary differential systems, Appl math comput 114, 115-123 (2000) · Zbl 1027.34009 · doi:10.1016/S0096-3003(99)00104-6
[24] Abdou, M. A.; Soliman, A. A.: Variational iteration method for solving burger’s and coupled burger’s equations, J comput appl math 181, 245-251 (2005) · Zbl 1072.65127 · doi:10.1016/j.cam.2004.11.032
[25] Odibat, Z. M.; Momani, S.: Application of variational iteration method to nonlinear differential equations of fractional order, Int J nonlinear sci numer simul 7, 27-34 (2006) · Zbl 1378.76084
[26] Tatari M, Dehghan M. He’s variational iteration method for computing a control parameter in a semi-linear inverse parabolic equation. Chaos, Solitons & Fractals, in press, doi:10.1016/j.chaos.2006.01.059. · Zbl 1131.65084 · doi:10.1016/j.chaos.2006.01.059
[27] El-Sayed, S. M.; Kaya, D.; Zarea, S.: The decomposition method applied to solve high-order linear Volterra – Fredholm integro-differential equations, Int J nonlinear sci numer simul 5, 105-112 (2004) · Zbl 1401.65149
[28] Abassy, T. A.; El-Tawil, M. A.; Saleh, H. K.: The solution of KdV and mkdv equations using Adomian pad approximation, Int J nonlinear sci numer simul 5, 327-340 (2004) · Zbl 1401.65122
[29] El-Danaf, T. S.; Ramadan, M. A.; Alaal, F. E. I. Abd; Saleh, H. K.: The use of Adomian decomposition method for solving the regularized long-wave equation, Chaos, solitons & fractals 26, 747-757 (2005) · Zbl 1073.35010 · doi:10.1016/j.chaos.2005.02.012
[30] He, J. H.: Perturbation methods: basic and beyond, (2006)
[31] Wazwaz, A. M.: A note on using Adomian decomposition method for solving boundary value problems, Found phys lett 13, 493-498 (2000)
[32] Momani, S.; Abuasad, S.: Application of he’s variational iteration method to Helmholtz equation, Chaos, solitons & fractals 27, 1119-1123 (2006) · Zbl 1086.65113 · doi:10.1016/j.chaos.2005.04.113
[33] He, J. H.: Homotopy perturbation method for solving boundary value problems, Phys lett A 350, 87-88 (2006) · Zbl 1195.65207 · doi:10.1016/j.physleta.2005.10.005
[34] Lanczos, C.: Applied analysis, (1987) · Zbl 0111.12403
[35] Gottlieb, D.; Hussaini, M.; Orszg, S.: R.voigtd.gottliebm.hussainitheory and applications of spectral methods in spectral methods for partial differential equations, Theory and applications of spectral methods in spectral methods for partial differential equations, 1-54 (1984) · Zbl 0599.65079
[36] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A.: Spectral methods in fluid dynamic, (1986) · Zbl 0717.76004
[37] Gradshetyn, I. S.; Ryzhik, I. M.: Tables of integrals, series, and products, (1979)
[38] Boyd, J. P.: The Blasius function in the complex plane, Exp math 8, 381-394 (1999) · Zbl 0980.34053
[39] Liao, S. J.: On the homotopy analysis method for nonlinear problems, Appl math comput 147, 499-513 (2004) · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[40] Howarth, L.: On the solution of the laminar boundary layer equations, Proc R soc 164, 547-579 (1938) · JFM 64.1452.01 · doi:10.1098/rspa.1938.0037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.