×

Numerical study of traveling-wave solutions for the Camassa–Holm equation. (English) Zbl 1136.35448

Summary: We explore numerically different aspects of periodic traveling-wave solutions of the Camassa-Holm equation. In particular, the time evolution of some recently found new traveling-wave solutions and the interaction of peaked and cusped waves is studied.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35B10 Periodic solutions to PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Beals, R.; Sattinger, D.; Szmigielski, J., Acoustic scattering and the extended Korteweg-de Vries hierarchy, Adv. math., 40, 190-206, (1998) · Zbl 0919.35118
[2] Camassa, R.; Holm, D., An integrable shallow water equation with peaked solitons, Phys. rev. lett., 71, 1661-1664, (1993) · Zbl 0972.35521
[3] Constantin, A., On the Cauchy problem for the periodic Camassa-Holm equation, J. different. equat., 141, 218-235, (1997) · Zbl 0889.35022
[4] Constantin, A., On the inverse spectral problem for the Camassa-Holm equation, J. funct. anal., 155, 352-363, (1998) · Zbl 0907.35009
[5] Constantin, A., On the scattering problem for the Camassa-Holm equation, Proc. R. soc. London, 457, 953-970, (2001) · Zbl 0999.35065
[6] Constantin, A.; Escher, J., Wave breaking for nonlinear nonlocal shallow water equations, Acta math., 181, 229-243, (1998) · Zbl 0923.76025
[7] Constantin, A.; Escher, J., Global existence and blow-up for a shallow water equation, Ann. sci. norm. sup. Pisa, 26, 303-328, (1998) · Zbl 0918.35005
[8] Constantin, A.; Escher, J., Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Commun. pure appl. math., 51, 475-504, (1998) · Zbl 0934.35153
[9] Constantin, A.; Escher, J., On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233, 75-91, (2000) · Zbl 0954.35136
[10] Constantin, A.; Kolev, B., On the geometric approach to the motion of inertial mechanical systems, J. phys. A, 35, R51-R79, (2002) · Zbl 1039.37068
[11] Constantin, A.; Kolev, B., Geodesic flow on the diffeomorphism group of the circle, Comment. math. helv., 78, 787-804, (2003) · Zbl 1037.37032
[12] Constantin, A.; McKean, H., A shallow water equation on the circle, Commun. pure appl. math., 52, 949-982, (1999) · Zbl 0940.35177
[13] Constantin, A.; Molinet, L., Global weak solutions for a shallow water equation, Commun. math. phys., 211, 45-61, (2000) · Zbl 1002.35101
[14] Constantin, A.; Molinet, L., Orbital stability of solitary waves for a shallow water equation, Phys. D, 157, 75-89, (2001) · Zbl 0984.35139
[15] Constantin, A.; Strauss, W., Stability of peakons, Commun. pure appl. math., 53, 603-610, (2000) · Zbl 1049.35149
[16] Constantin, A.; Strauss, W., Stability of the Camassa-Holm solitons, J. nonlinear sci., 12, 415-422, (2002) · Zbl 1022.35053
[17] Danchin, R., A few remarks on the Camassa-Holm equation, Differ. integral equat., 14, 953-988, (2001) · Zbl 1161.35329
[18] Ferreira, M.; Kraenkel, R.; Zenchuk, A., Soliton-cuspon interaction for the Camassa-Holm equation, J. phys. A: math. gen., 32, 8665-8670, (1999) · Zbl 0946.35088
[19] Fuchssteiner, B.; Fokas, A., Symplectic structures, their Bäcklund transformation and hereditary symmetries, Phys. D, 4, 47-66, (1981) · Zbl 1194.37114
[20] Johnson, R., Camassa-Holm, Korteweg-de Vries and related models for water waves, J. fluid mech., 455, 63-82, (2002) · Zbl 1037.76006
[21] Johnson, R., On solutions of the Camassa-Holm equation, Proc. R. soc. London A, 459, 1687-1708, (2003) · Zbl 1039.76006
[22] Kraenkel, R.; Zenchuk, A., Camassa-Holm equation: transformation to deformed sinh-Gordon equations, cuspon and soliton solutions, J. phys. A: math. gen., 32, 4733-4747, (1999) · Zbl 0941.35094
[23] Lenells, J., The scattering approach for the Camassa-Holm equation, J. nonlinear math. phys., 9, 389-393, (2002) · Zbl 1014.35082
[24] Lenells, J., Stability of periodic peakons, Int. math. res. notices, 10, 485-499, (2004) · Zbl 1075.35052
[25] Lenells, J., A variational approach to the stability of periodic peakons, J. nonlinear math. phys., 11, 151-163, (2004) · Zbl 1067.35076
[26] Lenells J, Traveling wave solutions of the Camassa-Holm equation. J Diff Eq, submitted · Zbl 1082.35127
[27] Li, Y.; Olver, P., Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system. I. compactons and peakons, Discrete cont. dynam. syst., 3, 419-432, (1997) · Zbl 0949.35118
[28] Li, Y.; Olver, P., Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. differ. eq., 162, 27-63, (2000) · Zbl 0958.35119
[29] Misiolek, G., A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. geom. phys., 24, 203-208, (1998) · Zbl 0901.58022
[30] McKean, H., Breakdown of a shallow water equation, Asian J. math, 2, 867-874, (1998) · Zbl 0959.35140
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.