# zbMATH — the first resource for mathematics

Orthogonal wavelet frames and vector-valued wavelet transforms. (English) Zbl 1136.42026
A pair of Bessel sequences $$\{x_j\}$$ and $$\{y_j\}$$ in a separable Hilbert space $$H$$ is said to be orthogonal if the composition operator $$\sum_j \langle \cdot,\;x_j\rangle \;y_j=0$$. The direct sum sequence $$\{x_j^1\oplus\cdots\oplus x_j^N\}$$ is a Parseval frame for the $$N$$-fold direct sum $$H\oplus H\oplus\dots H$$ if and only if $$\{x_j^k\}_j$$ is a Parseval frame for $$H$$ (meaning $$\sum_j \langle \cdot,\;x_j^k \rangle \;x_j = I$$ for each $$k=1,\dots,N$$), and the sequences $$\{x_j^k\}_j$$ are orthogonal for different $$k$$.
Given functions $$m_0,\dots, m_r\in L^\infty [0,1)$$ let $$M(\xi)$$ denote the $$r\times 2$$ matrix whose first column is the transpose of $$(m_0(\xi),\dots,m_r(\xi))$$ and whose second column is that of $$(m_0(\xi+1/2),\dots, m_r(\xi+1/2))$$ and let $$\widetilde{M}$$ be the submatrix obtained by deleting the first row of $$M$$. A refinable function (one whose Fourier transform satisfies $$\widehat{\phi}(2\xi)=m_0(\xi)\widehat{\phi}(\xi)$$ for some periodic $$m$$) is said to satisfy the unitary extension principle if, whenever the matrix $$M(\xi)$$ satisfies $$M^\ast(\xi)M(\xi)=I_2$$ then the affine system ($$\psi_{j,k}=2^{j/2}\psi(2^j x-k)$$) generated by $$\{\phi,\psi_1,\dots,\psi_r\}$$ with $$\widehat{\psi}_k(2\xi)=m_k(\xi)\widehat{\phi}(\xi)$$, defines a Parseval wavelet frame for $$L^2(\mathbb{R})$$.
Here the authors prove the following about $$\phi$$ satisfying the unitary extension principle. Suppose that $$\mathcal{M}=\{m_0,m_1,\dots,m_r\}$$ and $$\mathcal{N}=\{m_0,n_1,\dots,n_r\}$$ are such that $$M^\ast M(\xi)=I_2=N^\ast N(\xi)$$ and $$\widetilde{M}^\ast(\xi)\widetilde{N}(\xi)=0$$ for almost all $$\xi\in [0,1)$$. Then the affine systems generated by $$\psi_k$$ and $$\eta_k$$ where $$\widehat{\psi}_k(2\xi)=m_k(\xi)\widehat{\psi}_k(\xi)$$ and $$\widehat{\eta}_k(2\xi)=n_k(\xi)\widehat{\eta}_k(\xi)$$ form orthogonal Parseval wavelet frames. A more general construction of pairwise orthogonal multiwavelet frames is also provided and applied in higher dimensions.
The purpose of these results is to define true vector-valued discrete wavelet transforms in which wavelet expansions do not reduce to coordinatewise expansions. Discrete implementations and applications to wavelet decomposition of color images are outlined.

##### MSC:
 42C15 General harmonic expansions, frames 42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems 46E20 Hilbert spaces of continuous, differentiable or analytic functions 94A12 Signal theory (characterization, reconstruction, filtering, etc.)
##### Keywords:
wavelet; frame; discrete wavelet transform; vector wavelets
Full Text:
##### References:
 [1] R. Balan, Weyl-Heisenberg super frames, preprint, 1999 [2] R. Balan, Z. Landau, Topologies of Weyl-Heisenberg sets, preprint, 2002 [3] Bildea, S.; Dutkay, D.; Picioroaga, G., MRA super-wavelets, New York J. math., 11, 1-19, (2005), (electronic) · Zbl 1079.42022 [4] Bownik, M., A characterization of affine dual frames in $$L^2(\mathbb{R}^n)$$, Appl. comput. harmon. anal., 8, 2, 203-221, (2000) · Zbl 0961.42018 [5] Chui, C.; Jiang, Q., Balanced multi-wavelets in $$\mathbb{R}^s$$, Math. comp., 74, 251, 1323-1344, (2005), (electronic) · Zbl 1061.42023 [6] Chui, C.; Lian, J., Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale =3, Appl. comput. harmon. anal., 2, 1, 21-51, (1995) · Zbl 0814.42016 [7] Chui, C.; Lian, J., A study of orthonormal multi-wavelets, Selected keynote papers presented at 14th IMACS world congress (Atlanta, GA, 1994), Appl. numer. math., 20, 3, 273-298, (1996) · Zbl 0877.65098 [8] Daubechies, I.; Grossmann, A.; Meyer, Y., Painless nonorthogonal expansions, J. math. phys., 27, 5, 1271-1283, (1986) · Zbl 0608.46014 [9] Daubechies, I.; Han, B.; Ron, A.; Shen, Z., Framelets: MRA-based constructions of wavelet frames, Appl. comput. harmon. anal., 14, 1, 1-46, (2003) · Zbl 1035.42031 [10] Duffin, R.; Schaeffer, A., A class of nonharmonic Fourier series, Trans. amer. math. soc., 72, 341-366, (1952) · Zbl 0049.32401 [11] Fowler, J.; Hua, L., Wavelet transforms for vector fields using omnidirectionally balanced multiwavelets, IEEE trans. signal process., 50, 12, 3018-3027, (2002) · Zbl 1369.94142 [12] Geronimo, J.; Hardin, D.; Massopust, P., Fractal functions and wavelet expansions based on several scaling functions, J. approx. theory, 78, 3, 373-401, (1994) · Zbl 0806.41016 [13] Han, D.; Larson, D., Frames, bases and group representations, (), No. 697 · Zbl 0971.42023 [14] Hernandez, E.; Weiss, G., An introduction to wavelets, (1998), CRC Press Boca Raton [15] Ron, A.; Shen, Z., Affine systems in $$L^2(\mathbb{R}^d)$$: the analysis of the analysis operator, J. funct. anal., 148, 2, 408-447, (1997) · Zbl 0891.42018 [16] Shen, Z., Refinable function vectors, SIAM J. math. anal., 29, 1, 235-250, (1998), (electronic) · Zbl 0913.42028 [17] Vaidyanathan, P.P., Multirate systems and filter banks, (1993), Prentice Hall · Zbl 0784.93096 [18] Weber, E., Orthogonal frames of translates, Appl. comput. harmon. anal., 17, 1, 69-90, (2004) · Zbl 1042.42038 [19] Xia, X.; Geronimo, J.; Hardin, D.; Suter, B., Design of prefilters for discrete multiwavelet transforms, IEEE trans. signal process., 44, 1, 25-35, (1994) [20] Xia, X.; Suter, B.W., Vector-valued wavelets and vector filter banks, IEEE trans. signal process., 44, 3, 508-518, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.