×

Solution of a class of singular boundary value problems. (English) Zbl 1136.65072

Summary: A class of singular ordinary differential equations is considered. These problems arise from many engineering and physics applications such as electro-hydrodynamics and some thermal explosions. The Adomian decomposition method is applied to solve these singular boundary value problems. The approximate solution is calculated in the form of series with easily computable components. The method is tested for its efficiency by considering four examples and results are compared with previous known results. Techniques that can be applied to obtain higher accuracy of the present method has also been discussed.

MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations
34B16 Singular nonlinear boundary value problems for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chawla, M.M., Katti, C.P.: Finite difference methods and their convergence for a class of singular two-point boundary value problems. Numer. Math. 39, 341–350 (1982) · Zbl 0489.65055 · doi:10.1007/BF01407867
[2] Qu, R., Agarwal, P.: A collocation method for solving a class of singular nonlinear two-point boundary value problems. J. Comput. Appl. Math. 83, 147–163 (1997) · Zbl 0888.65088 · doi:10.1016/S0377-0427(97)00070-8
[3] Kumar, M.: A fourth order spline finite difference method for singular two-point boundary value problems. Int. J. Comput. Math. 80, 1499–1504 (2003) · Zbl 1045.65066 · doi:10.1080/0020716031000148179
[4] Kumar, M., Aziz, T.: A uniform mesh finite difference method for a class of singular two-point boundary value problems. Appl. Math. Comput. 180, 173–177 (2006) · Zbl 1103.65088 · doi:10.1016/j.amc.2005.11.165
[5] Pandey, R.K.: On a class of weakly regular singular two point boundary value problems, II. J. Differ. Equ. 127, 110–123 (1996) · Zbl 0847.34027 · doi:10.1006/jdeq.1996.0064
[6] Chawla, M.M., Subramanian, R.: A new spline method for singular two-point boundary value problems. J. Inst. Math. Appl. 24, 291 (1988) · Zbl 0656.65080
[7] Pandey, R.K., Singh, A.K.: On the convergence of a finite difference method for general singular boundary value problems. Int. J. Comput. Math. 80, 1323–1331 (2003) · Zbl 1047.65060 · doi:10.1080/0020716031000112358
[8] Wazwaz, A.M.: Adomian decomposition method for a reliable treatment of the EmdenFowler equation. Appl. Math. Comput. 161, 543–560 (2005) · Zbl 1061.65064 · doi:10.1016/j.amc.2003.12.048
[9] Adomian, G.: Nonlinear Stochastic Systems Theory and Applications to Physics. Kluwer, Dordrecht, Holland (1989) · Zbl 0659.93003
[10] Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Press, Boston (1994) · Zbl 0802.65122
[11] Adomian, G.: A review of the decomposition method and some recent results for nonlinear equations. Comput. Math. Appl. 21, 101–127 (1989) · Zbl 0732.35003 · doi:10.1016/0898-1221(91)90220-X
[12] Cherruault, Y., Adomian, G.: Decomposition method: a new proof of convergence. Math. Comput. Model. 18(12), 103–106 (1993) · Zbl 0805.65057 · doi:10.1016/0895-7177(93)90233-O
[13] Hosseini, M.M., Nasabzadeh, H.: On the convergence of Adomian decomposition method. Appl. Math. Comput. 44, 13–24 (2006) · Zbl 1111.65062
[14] Jiao, Y.C., Yamamoto, Y., Dang, C., Hao, Y.: An aftertreatment technique for improving the accuracy of Adomian’s decomposition method. Comput. Math. Appl. 43, 783–798 (2002) · Zbl 1005.34006 · doi:10.1016/S0898-1221(01)00321-2
[15] Ghosh, S., Roy, A., Roy, D.: An adaption of Adomian decomposition for numeric-analytic integration of strongly nonlinear and chaotic oscillators. Comput. Methods Appl. Mech. Eng. 196, 1133–1153 (2007) · Zbl 1120.70303 · doi:10.1016/j.cma.2006.08.010
[16] Guellal, S., Grimalt, P., Cherruault, Y.: Numerical study of Lorenz’s equation by the Adomian method. Comput. Math Appl. 33, 25–29 (1997) · Zbl 0869.65044 · doi:10.1016/S0898-1221(96)00234-9
[17] Vadasz, P., Olek, S.: Convergence and accuracy of Adomian’s decomposition method for the solution of Lorenz equations. Int. J. Heat Mass Transfer 43, 1715–1734 (2000) · Zbl 1015.76075 · doi:10.1016/S0017-9310(99)00260-4
[18] Vadasz, P., Olek, S.: Weak turbulence and chaos for low Prandtl number gravity driven convection in porous media. Transp. Porous Media 37(1), 69–91 (1999) · doi:10.1023/A:1006522018375
[19] Vadasz, P.: Local and global transitions to chaos and hysteresis in a porous layer heated from below. Transp. Porous Media 37(2), 213–245 (1999) · doi:10.1023/A:1006658726309
[20] Vadasz, P.: Subcritical transitions to chaos and hysteresis in a fluid layer heated from below. Int. J. Heat Mass Transfer 43(5), 705–724 (2000) · Zbl 1112.76360 · doi:10.1016/S0017-9310(99)00173-8
[21] Vadasz, P., Olek, S.: Route to chaos for moderate Prandtl number convection in a porous layer heated from below. Transp. Porous Media 41(2), 211–239 (2000) · doi:10.1023/A:1006685205521
[22] Repaci, A.: Non-linear dynamical systems: on the accuracy of Adomian’s decomposition method. Appl. Math. Lett. 3, 35–39 (1990) · Zbl 0719.93041 · doi:10.1016/0893-9659(90)90042-A
[23] Mittal, R.C., Nigam, R.: Solution of two dimentional fractional dispersion equations by Adomian decomposition method. In: Proceedings of the 2nd International Congress on Computational Mechanics and Simulation (ICCMS-06), pp. 1636–1640 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.