High-order local absorbing conditions for the wave equation: Extensions and improvements. (English) Zbl 1136.65081

Summary: The solution of the time-dependent wave equation in an unbounded domain is considered. An artificial boundary \(\mathcal B\) is introduced which encloses a finite computational domain. On \(\mathcal B\) an absorbing boundary condition (ABC) is imposed. A formulation of local high-order ABCs recently proposed by T. Hagstrom and T. Warburton [Wave Motion 39, No. 4, 327–338 (2004; Zbl 1163.74364)] and based on a modification of the ABCs of R. L. Higdon [Math. Comput. 49, 65–90 (1987; Zbl 0654.65083); SIAM J. Numer. Anal. 31, No. 1, 64–100 (1994; Zbl 0798.65113)], is further developed and extended in a number of ways.
First, the ABC is analyzed in new ways and important information is extracted from this analysis. Second, the ABCs are extended to the case of a dispersive medium, for which the Klein-Gordon wave equation governs. Third, the case of a stratified medium is considered and the way to apply the ABCs to this case is explained. Fourth, the ABCs are extended to take into account evanescent modes in the exact solution. The analysis is applied throughout this paper to two-dimensional wave guides.
Two numerical algorithms incorporating these ABCs are considered: a standard semi-discrete finite element formulation in space followed by time-stepping, and a high-order finite difference discretization in space and time. Numerical examples are provided to demonstrate the performance of the extended ABCs using these two methods.


65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI


[1] Hagstrom, T., Radiation boundary conditions for the numerical simulation of waves, Acta numer., 8, 47-106, (1999) · Zbl 0940.65108
[2] Bérenger, J.P., A perfectly matched layer for the absorption of electromagnetic waves, J. comput. phys, 114, 185-200, (1994) · Zbl 0814.65129
[3] Appelo, D.; Hagstrom, T.; Kreiss, G., Perfectly matched layers for hyperbolic systems: general formulation, well-posedness, and stability, SIAM J. appl. math., 67, 1-23, (2006) · Zbl 1110.35042
[4] Givoli, D., Non-reflecting boundary conditions: a review, J. comput. phys, 94, 1-29, (1991) · Zbl 0731.65109
[5] Collino, F., High order absorbing boundary conditions for wave propagation models. straight line boundary and corner cases, (), 161-171 · Zbl 0814.35065
[6] Givoli, D., High-order local non-reflecting boundary conditions: a review, Wave motion, 39, 319-326, (2004) · Zbl 1163.74356
[7] Engquist, B.; Majda, A., Radiation boundary conditions for acoustic and elastic calculations, Commun. pure appl. math., 32, 313-357, (1979) · Zbl 0387.76070
[8] Bayliss, A.; Turkel, E., Radiation boundary conditions for wave-like equations, Commun. pure appl. math., 33, 707-725, (1980) · Zbl 0438.35043
[9] Higdon, R.L., Numerical absorbing boundary conditions for the wave equation, Math. comput., 49, 65-90, (1987) · Zbl 0654.65083
[10] Higdon, R.L., Radiation boundary conditions for dispersive waves, SIAM J. numer. anal., 31, 64-100, (1994) · Zbl 0798.65113
[11] Givoli, D.; Neta, B., High-order non-reflecting boundary conditions for dispersive waves, Wave motion, 37, 257-271, (2003) · Zbl 1163.74357
[12] Fix, G.J.; Marin, S.P., Variational methods for underwater acoustic problems, J. comp. phys., 28, 253-270, (1978) · Zbl 0384.76048
[13] Givoli, D., Recent advances in the dtn FE method, Arch. comput. meth. eng., 6, 71-116, (1999)
[14] Alpert, B.; Greengard, L.; Hagstrom, T., Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation, SIAM J. numer. anal., 37, 1138-1164, (2000) · Zbl 0963.65104
[15] Hagstrom, T., On high-order radiation boundary conditions, (), 1-22 · Zbl 0864.65065
[16] Hagstrom, T.; Hariharan, S.I., A formulation of asymptotic and exact boundary conditions using local operators, Appl. numer. math., 27, 403-416, (1998) · Zbl 0924.35167
[17] Givoli, D.; Neta, B., High-order non-reflecting boundary scheme for time-dependent waves, J. comput. phys, 186, 24-46, (2003) · Zbl 1025.65049
[18] Givoli, D.; Neta, B.; Patlashenko, I., Finite element solution of exterior time-dependent wave problems with high-order boundary treatment, Int. J. numer. meth. engng, 58, 1955-1983, (2003) · Zbl 1034.78014
[19] Hagstrom, T.; Warburton, T., A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first order systems, Wave motion, 39, 327-338, (2004) · Zbl 1163.74364
[20] Givoli, D.; Hagstrom, T.; Patlashenko, I., Finite element formulation with high order absorbing boundary conditions for time-dependent waves, Comput. meth. appl. mech. eng., 195, 3666-3690, (2006) · Zbl 1125.76040
[21] Hagstrom, T.; de Castro, M.; Givoli, D.; Tzemach, D., Local high order absorbing boundary conditions for time-dependent waves in guides, J. comput. acoust., 15, 1-22, (2007) · Zbl 1140.78318
[22] A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed., Artech House, Boston, MA, 2000. · Zbl 0963.78001
[23] Diaz, J.; Joly, P., An analysis of higher order boundary conditions for the wave equation, SIAM J. appl. math., 65, 1547-1575, (2005) · Zbl 1078.35062
[24] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston MA, 1995. · Zbl 0840.65126
[25] Asvadurov, S.; Druskin, V.; Guddati, M.; Knizherman, L., On optimal finite difference approximation of PML, SIAM J. numer. anal., 41, 287-305, (2003) · Zbl 1047.65063
[26] Diaz, J.; Joly, P., A time-domain analysis of PML models in acoustics, Comput. meth. appl. mech. eng., 195, 3820-3853, (2006) · Zbl 1119.76046
[27] T. Hagstrom, T. Warburton, Complete radiation boundary conditions: minimizing the long time error growth of local methods, submitted for publication. · Zbl 1202.65119
[28] T. Hagstrom, T. Warburton, D. Givoli, Radiation boundary conditions for time-dependent waves based on complete plane wave expansions, submitted for publication. · Zbl 1194.35241
[29] M. de Castro, Stability of parabolic systems on a half-space and theoretical aspects of absorbing boundary conditions, Doctoral Dissertation, The University of New Mexico, Albuquerque, NM, 2006.
[30] Pedlosky, J., Geophysical fluid dynamics, (1987), Springer New York · Zbl 0713.76005
[31] A.D. Pierce, Acoustics, Acoustical Society of America, NY, 1989.
[32] Hughes, T.J.R., The finite element method, (1987), Prentice Hall Englewood Cliffs, NJ
[33] Greengard, L.; Huang, J.; Rokhlin, V.; Wandzura, S., Accelerating fast multipole methods for low frequency scattering, IEEE comput. sci. eng., 5, 32-38, (1998)
[34] Yarvin, N.; Rokhlin, V., Generalized Gaussian quadratures and singular value decompositions of integral operators, SIAM J. sci. comput., 20, 699-718, (1999) · Zbl 0932.65020
[35] Gustafsson, B.; Kreiss, H.-O.; Oliger, J., Time dependent problems and difference methods, (1995), Wiley NY
[36] Hagstrom, T.; Hagstrom, G., Grid stabilization of high-order one-sided differencing I: first order hyperbolic systems, J. comput. phys., 223, 316-340, (2007) · Zbl 1113.65088
[37] T. Hagstrom, G. Hagstrom, Grid stabilization of high-order one-sided differencing II: Second order wave equations, submitted for publication. · Zbl 1257.65049
[38] Mar-Or, A.; Givoli, D., The global – regional model interaction problem – analysis of carpenter’s scheme and related issues, Int. J. multiscale comput. eng., 4, 617-646, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.