×

A quadtree adaptive method for simulating fluid flows with moving interfaces. (English) Zbl 1136.76408

Summary: A computational method for solving fluid flow problems with moving interfaces is presented. Herein, adaptive quadtree grids are used coupled with the CICSAM [O. Ubbink, Numerical prediction of two fluid systems with sharp interfaces, PhD Thesis, Imperial College of Science, Technology and Medicine, London, 1997] free surface capturing volume of fluid (VoF) method and PLIC reconstruction to interpolate the volume fraction field during refinement and derefinement processes. The combination of high resolution adaptive hierarchical remeshing and CICSAM interface advection is shown to overcome the problems of interface smearing and high CPU intensivity inherent in most VoF schemes. The result is a combination of free surface tracking and free surface capturing in that the interface is effectively tracked by the adapting refinements in the quadtree grid. In this way, a sharp interface is achieved and the advantages of both free surface tracking and capturing are combined. The new method is applied to interface advection examples in translating, rotating and shearing flow fields, and the benefits of using adapting quadtree grids demonstrated.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)

Software:

SLIC
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] O. Ubbink, Numerical prediction of two fluid systems with sharp interfaces, PhD Thesis, Imperial College of Science, Technology and Medicine, London, 1997; O. Ubbink, Numerical prediction of two fluid systems with sharp interfaces, PhD Thesis, Imperial College of Science, Technology and Medicine, London, 1997
[2] Hyman, J. M., Numerical methods for tracking interfaces, Physica, 12D, 396-407 (1984) · Zbl 0604.65092
[3] Wilkes, E. D.; Phillips, S. D.; Basaran, O. A., Computational and experimental analysis of dynamics of drop formation, Phys. Fluids, 11, 12, 3577-3598 (1999) · Zbl 1149.76585
[4] Carvalho, M. S.; Scriven, L. E., Three-dimensional stability analysis of free surface flows: application to forward deformable roll coating, J. Comput. Phys., 151, 534-562 (1999) · Zbl 0946.76028
[5] Greaves, D. M.; Borthwick, A. G.L.; Wu, G. X.; Eatock Taylor, R., A moving boundary finite element method for fully non-linear wave simulations, J. Ship Res., 41, 181-194 (1997)
[6] Causon, D. M., An efficient front tracking algorithm for multi-component fluid calculations with biomedical applications, Zeit. Angew. Math. Mech., 76, S1, 371-372 (1996) · Zbl 0925.76853
[7] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201-225 (1981) · Zbl 0462.76020
[8] Heinrich, P., Nonlinear numerical model of landslide-generated water waves, Int. J. Engrg. Fluid Mech., 4, 4, 403-416 (1991)
[9] Tomiyama, A.; Sou, A.; Minagawa, H.; Sakaguchi, T., Numerical analysis of a single bubble by VoF method, JSME Int. J, Ser. B, 36, 51-56 (1993)
[10] Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G., Modelling merging and fragmentation in multiphase flows with SURFER, J. Comput. Phys., 113, 134-147 (1994) · Zbl 0809.76064
[11] Noh, W. F.; Woodward, P., SLIC (Simple Line Interface Calculations), Lect. Notes Phys., 59, 330-340 (1976) · Zbl 0382.76084
[12] Ashgriz, N.; Poo, J. Y., FLAIR: flux line-segment model for advection and interface reconstruction, J. Comput. Phys., 93, 449-468 (1991) · Zbl 0739.76012
[13] Gueyffier, D.; Li, J.; Nadim, A.; Scardovelli, R.; Zaleski, S., Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows, J. Comput. Phys., 152, 423-456 (1999) · Zbl 0954.76063
[14] Leonard, B. P., The ULTIMATE conservative difference scheme applied to steady one-dimensional advection, Comput. Methods Appl. Mech. Engrg., 88, 17-74 (1991) · Zbl 0746.76067
[15] Leonard, B. P., A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Engrg., 19, 59-98 (1979) · Zbl 0423.76070
[16] Samet, H., The Design and Analysis of Spatial Data Structures (1990), Addison-Wesley: Addison-Wesley Reading, MA
[17] Samet, H., Applications of Spatial Data Structures (1990), Addison-Wesley: Addison-Wesley Reading, MA
[18] Yerry, M. A.; Shephard, M. S., A modified quadtree approach to finite element mesh generation, IEEE Comput. Graph. Appl., 3, 1, 39-46 (1983)
[19] Messaoud, B., Parallel and Adaptive Algorithms for Elliptic Partial Differential Systems (1992), PhD Rensselaer Polytechnic Institute: PhD Rensselaer Polytechnic Institute Troy, NY
[20] van Dommelen, L.; Rundensteiner, E. A., Fast, adaptive summation of point forces in the two-dimensional Poisson equation, J. Comput. Phys., 83, 126-147 (1989) · Zbl 0672.76026
[21] J. Józsa, C. Gáspár, Fast, adaptive approximation of wind-induced horizontal flow patterns in shallow lakes using quadtree-based multigrid method, C.M.W.R. Denver, 1992; J. Józsa, C. Gáspár, Fast, adaptive approximation of wind-induced horizontal flow patterns in shallow lakes using quadtree-based multigrid method, C.M.W.R. Denver, 1992
[22] Young, D. P.; Melvin, R. G.; Bieterman, M. B.; Johnson, F. T.; Samant, S. S.; Bussoletti, J. E., A locally refined rectangular grid finite element method: application to computational fluid dynamics and computational physics, J. Comput. Phys., 92, 1-66 (1991) · Zbl 0709.76078
[23] de Zeeuw, D.; Powell, K. G., An adaptively refined cartesian mesh solver for the Euler equations, J. Comput. Phys., 104, 56-68 (1993) · Zbl 0766.76066
[24] Shephard, M. S.; Georges, M. K., Automatic three-dimensional mesh generation by the finite octree technique, Int. J. Numer. Methods Engrg., 32, 709-749 (1991) · Zbl 0755.65116
[25] Greaves, D. M.; Borthwick, A. G.L., On the use of adaptive hierarchical meshes for numerical simulation of separated flows, Int. J. Numer. Methods Fluids, 26, 303-322 (1998) · Zbl 0910.76056
[26] Greaves, D. M.; Borthwick, A. G.L., Hierarchical tree-based finite element mesh generation”, Int. J. Numer. Methods Engrg., 45, 447-471 (1999) · Zbl 0947.76050
[27] Hu, Z. Z.; Greaves, D. M.; Wu, G. X., Numerical simulation of fluid flows using an unstructured finite volume method with adaptive tri-tree grids, Int. J. Numer. Methods Fluids, 39, 403-440 (2002) · Zbl 1014.76048
[28] D.M. Greaves, Numerical modelling of laminar separated flows and inviscid steep waves using adaptive hierarchical meshes, DPhil Thesis, Oxford University, 1995; D.M. Greaves, Numerical modelling of laminar separated flows and inviscid steep waves using adaptive hierarchical meshes, DPhil Thesis, Oxford University, 1995
[29] Ubbink, O.; Issa, R. I., A method for capturing sharp fluid interfaces on arbitrary meshes, J. Comput. Phys., 153, 26-50 (1999) · Zbl 0955.76058
[30] Rudman, M., Volume-tracking methods for interfacial flow calculations, Int. J. Numer. Methods Fluids, 24, 671-691 (1997) · Zbl 0889.76069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.