×

A simple approach for pricing equity options with Markov switching state variables. (English) Zbl 1136.91410

From the text: We present a generalisation of the well-known Cox-Ross-Rubinstein model for the pricing of American and European options which features stochastic volatility.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1016/j.jbankfin.2003.10.017
[2] DOI: 10.2307/2329069
[3] Balsara N, A finite difference approach to valuing options with markov switching variables, Working Paper (2004)
[4] DOI: 10.1093/rfs/9.1.69
[5] DOI: 10.1086/260062 · Zbl 1092.91524
[6] DOI: 10.3905/jod.1998.408011
[7] DOI: 10.1142/S0219024902001511 · Zbl 1107.91324
[8] Brigo D, Risk 17 pp 97– (2004)
[9] DOI: 10.1016/0304-405X(76)90023-4
[10] Duan JC, Option pricing under regime switching. Working Paper (1998)
[11] Florescu I, Ann. Univ. Craiova Math. Comp. Sci. Ser. 31 pp 1– (2004)
[12] DOI: 10.1016/0304-4076(90)90093-9 · Zbl 0723.62050
[13] DOI: 10.1016/0022-0531(79)90043-7 · Zbl 0431.90019
[14] DOI: 10.1016/0304-4149(81)90026-0 · Zbl 0482.60097
[15] DOI: 10.1093/rfs/6.2.327 · Zbl 1384.35131
[16] DOI: 10.3905/jod.1996.407962
[17] DOI: 10.2307/2328253
[18] Jarrow RA, Option Pricing (1983)
[19] Leisen D, Stock evolution under stochastic volatility: a discrete approach (2000)
[20] DOI: 10.1093/rfs/14.1.113 · Zbl 1386.91144
[21] Mercurio F, A multi-stage uncertain volatility model (2002)
[22] DOI: 10.2307/3003143
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.