zbMATH — the first resource for mathematics

Numerical method for coupling the macro and meso scales in stochastic chemical kinetics. (English) Zbl 1137.65006
The authors develop a numerical method for simulation of stochastic chemical reaction system modeled by the Fokker-Planck equation for the probability density of the molecular state. Under the assumption that most of the molecular species have a normal distribution with a small variance, the dimension of the domain of the equation is reduced. The method preserves properties of the analytic solution such as non-negativity and constant total probability and is applied to a nine dimensional problem modeling an oscillating molecular clock.

65C30 Numerical solutions to stochastic differential and integral equations
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
80A30 Chemical kinetics in thermodynamics and heat transfer
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
Full Text: DOI
[1] N. Barkai and S. Leibler, Circadian clocks limited by noise, Nature, 403 (2000), pp. 267–268.
[2] F. Baras and M. M. Mansour, Microscopic simulations of chemical instabilities, Adv. Chem. Phys., 100 (1997), pp. 393–474. · doi:10.1002/9780470141595.ch5
[3] M. Berzins, Variable-order finite elements and positivity preservation for hyperbolic PDEs, Appl. Numer. Math., 48 (2004), pp. 271–292. · Zbl 1038.65093 · doi:10.1016/j.apnum.2003.10.007
[4] K. Burrage, M. Hegland, S. MacNamara, and R. B. Sidje, A Krylov-based finite state projection algorithm for solving the chemical master equation arising in the discrete modeling of biological systems, in Proceedings of the 150th Markov Anniversary Meeting, A. N. Langville, W. J. Stewart, eds., Boson Books, Raleigh, NC, 2006, pp. 21–38.
[5] Y. Cao, D. Gillespie, and L. Petzold, Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems, J. Comput. Phys., 206 (2005), pp. 395–411. · Zbl 1088.80004 · doi:10.1016/j.jcp.2004.12.014
[6] J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York, 1969.
[7] J. Elf, J. Paulsson, O. G. Berg, and M. Ehrenberg, Near-critical phenomena in intracellular metabolite pools, Biophys. J., 84 (2003), pp. 154–170. · doi:10.1016/S0006-3495(03)74839-5
[8] S. Engblom, Computing the moments of high dimensional solutions of the master equation, Appl. Math. Comput., 180 (2006), pp. 498–515. · Zbl 1103.65011 · doi:10.1016/j.amc.2005.12.032
[9] L. Ferm, P. Lötstedt, and P. Sjöberg, Conservative solution of the Fokker–Planck equation for stochastic chemical reactions, BIT, 46 (2006), pp. S61–S83. · Zbl 1105.65091
[10] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1998. · Zbl 1042.35002
[11] D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22 (1976), pp. 403–434. · doi:10.1016/0021-9991(76)90041-3
[12] D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81 (1977), pp. 2340–2361. · doi:10.1021/j100540a008
[13] A. Golbeter, Computational approaches to cellular rhythms, Nature, 420 (2002), pp. 238–245. · doi:10.1038/nature01259
[14] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, 1997. · Zbl 0883.65022
[15] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations, 2nd edn., Springer, Berlin, 1993. · Zbl 0789.65048
[16] E. Haseltine and J. Rawlings, Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics, J. Chem. Phys., 117 (2002), pp. 6959–6969. · doi:10.1063/1.1505860
[17] M. Hegland, C. Burden, L. Santoso, S. MacNamara, and H. Booth, A solver for the stochastic master equation applied to gene regulatory networks, J. Comput. Appl. Math., 205 (2007), pp. 708–724. · Zbl 1121.65009 · doi:10.1016/j.cam.2006.02.053
[18] A. Hellander and P. Lötstedt, Hybrid method for the chemical master equation, DOI:10.1016/j.jcp.2007.07.020, to appear in J. Comput. Phys. · Zbl 1126.80010
[19] N. G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 1992. · Zbl 0511.60038
[20] D. A. Knoll and D. E. Keyes, Jacobian-free Newton–Krylov methods: a survey of approaches and applications, J. Comput. Phys., 193 (2004), pp. 357–397. · Zbl 1036.65045 · doi:10.1016/j.jcp.2003.08.010
[21] T. G. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov processes, J. Appl. Prob., 7 (1970), pp. 49–58. · Zbl 0191.47301 · doi:10.2307/3212147
[22] P. Lötstedt and L. Ferm, Dimensional reduction of the Fokker–Planck equation for stochastic chemical reactions, Multiscale Model. Simul., 5 (2006), pp. 593–614. · Zbl 1126.82027 · doi:10.1137/050639120
[23] R. J. MacKinnon and G. F. Carey, Positivity-preserving, flux-limited finite-difference and finite-element methods for reactive transport, Int. J. Numer. Meth. Fluids., 41 (2003), pp. 151–183. · Zbl 1025.76029 · doi:10.1002/fld.433
[24] H. H. McAdams and A. Arkin, It’s a noisy business. Genetic regulation at the nanomolar scale, Trends Gen., 15 (1999), pp. 65–69. · doi:10.1016/S0168-9525(98)01659-X
[25] C. V. Rao and A. P. Arkin, Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm, J. Chem. Phys., 118 (2003), pp. 4999–5010. · doi:10.1063/1.1545446
[26] M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Springer, New York, 1993. · Zbl 0917.35001
[27] H. Risken, The Fokker–Planck Equation, 2nd edn., Springer, Berlin, 1996. · Zbl 0866.60071
[28] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869. · Zbl 0599.65018 · doi:10.1137/0907058
[29] L. F. Shampine, S. Thompson, J. A. Kierzenka, and G. D. Byrne, Non-negative solutions of ODEs, Appl. Math. Comput., 170 (2005), pp. 556–569. · Zbl 1082.65547 · doi:10.1016/j.amc.2004.12.011
[30] P. Sjöberg, P. Lötstedt, and J. Elf, Fokker–Planck approximation of the master equation in molecular biology, DOI:10.1007/s00791-006-0045-6, to appear in Comput. Visual. Sci.
[31] S. H. Strogatz, Nonlinear Dynamics and Chaos, Perseus Books, Cambridge, MA, 1994.
[32] M. Thattai and A. van Oudenaarden, Intrinsic noise in gene regulatory networks, Proc. Nat. Acad. Sci. USA, 98 (2001), pp. 8614–8619. · doi:10.1073/pnas.151588598
[33] J. M. G. Vilar, H. Y. Kueh, N. Barkai and S. Leibler, Mechanisms of noise-resistance in genetic oscillators, Proc. Nat. Acad. Sci. USA, 99 (2002), pp. 5988–5992. · doi:10.1073/pnas.092133899
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.