×

On the existence of the logarithmic correction term in black hole entropy-area relation. (English) Zbl 1137.83349

Summary: In this paper we consider a model universe with large extra dimensions to obtain a modified black hole entropy-area relation. We use the generalized uncertainty principle to find a relation between the number of spacetime dimensions and the presence or vanishing of logarithmic prefactor in the black hole entropy-area relation. Our calculations are restricted to the microcanonical ensembles and we show that in the modified entropy-area relation, the microcanonical logarithmic prefactor appears only when spacetime has an even number of dimensions.

MSC:

83C57 Black holes
80A10 Classical and relativistic thermodynamics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Medved A.J.M. and Vagenas E.C. (2004). Phys. Rev. D 70: 124021
[2] Nozari K. and Sefiedgar A.S. (2006). Phys.Lett. B 635: 156–160 · Zbl 1247.83114
[3] Hod S. (2004). Class. Quant. Grav. 21: L97 · Zbl 1061.83521
[4] Medved A.J.M. (2005). Class. Quant. Grav. 22: 133–142 · Zbl 1060.83522
[5] Medved A.J.M. (2005). Class. Quant. Grav. 22: 5195 · Zbl 1087.83045
[6] Medved A.J.M. and Vagenas E.C. (2005). Mod. Phys. Lett. A20: 1723–1728
[7] Gour G. and Medved A.J.M. (2003). Class. Quant. Grav. 20: 3307–3326 · Zbl 1108.83304
[8] Alejandro Correa-Borbonet L. (2005). Braz. J. Phys. 35: 1145–1148
[9] Arkani-Hamed N., Dimopoulos S. and Dvali G. (1998). Phys. Lett. B 429: 263–272 · Zbl 1355.81103
[10] Antoniadis I., Arkani-Hamed N., Dimopoulos S. and Dvali G. (1998). Phys. Lett. B 436: 257–263
[11] Arkani-Hamed N., Dimopoulos S. and Dvali G. (1999). Phys. Rev. D 59: 086004
[12] Kempf A. (1995). Phys.Rev.D 52: 1108–1118
[13] Scardigli F. and Casadio R. (2003). Class. Quant. Grav. 20: 3915–3926 · Zbl 1048.83009
[14] Cavaglia M. and Das S. (2004). Class. Quant. Grav. 21: 4511–4522 · Zbl 1060.83521
[15] Bolen B. and Cavaglia M. (2005). Gen. Rel. Grav. 37: 1255–1262 · Zbl 1072.83012
[16] Nozari, K., Hamid Mehdipour, S.: arXiv:gr-qc/0511110, Int. J. Mod. Phys. A 21, 4979–4992 (2006)
[17] Nozari K. and Mehdipour S.H. (2005). Mod. Phys. Lett. A 20: 2937–2948
[18] Koch B. (2005). JHEP 0510: 053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.