×

zbMATH — the first resource for mathematics

Mean value analysis for polling systems. (English) Zbl 1137.90434
Summary: The present paper deals with the problem of calculating mean delays in polling systems with either exhaustive or gated service. We develop a mean value analysis (MVA) to compute these delay figures. The merits of MVA are in its intrinsic simplicity and its intuitively appealing derivation. As a consequence, MVA may be applied, both in an exact and approximate manner, to a large variety of models.

MSC:
90B22 Queues and service in operations research
60K25 Queueing theory (aspects of probability theory)
62H20 Measures of association (correlation, canonical correlation, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D. Bertsekas, R. Gallager, Data Networks (Prentice-Hall, New Jersey, 1987).
[2] O.J. Boxma, Workloads and waiting times in single-server systems with multiple customer classes (Queueing Systems, 5 (1989) 185–214). · Zbl 0681.60098
[3] R.B. Cooper, G. Murray, Queues served in cyclic order (The Bell System Technical Journal, 48 (1969) 675–689). · Zbl 0169.20804
[4] R.B. Cooper, Queues served in cyclic order: waiting times (The Bell System Technical Journal, 49 (1970) 399–413). · Zbl 0208.22502
[5] M. Eisenberg, Queues with periodic service and changeover time (Operations Research, 20 (2)(1972) 440–451). · Zbl 0245.60073 · doi:10.1287/opre.20.2.440
[6] M.J. Ferguson, Y. Aminetzah, Exact results for nonsymmetric token ring systems (IEEE Transactions on Communications, COM-33 (1985) 223–231).
[7] P. Franken, D. Koenig, W. Arndt, F. Schmidt, Queues and Point Processes (John Wiley, New York, 1982). · Zbl 0505.60058
[8] S.W. Fuhrmann, Performance analysis of a class of cyclic schedules (Bell Laboratories Technical Memorandum 81-59531-1, 1981).
[9] T. Hirayama, S.J. Hong, M. Krunz, A new approach to analysis of polling systems (Queueing Systems, 48 (1-2)(2004) 135–158). · Zbl 1061.60096 · doi:10.1023/B:QUES.0000039891.78286.dd
[10] A.G. Konheim, B. Meister, Waiting lines and times in a system with polling (Journal of the Association for Computing Machinery, 21 (3)(1974) 470–490). · Zbl 0298.68047
[11] A.G. Konheim, H. Levy, M.M. Srinivasan, Descendant set: an efficient approach for the analysis of polling systems (IEEE Transactions on Communications, 42 (2/3/4)(1994) 1245–1253). · doi:10.1109/TCOMM.1994.580233
[12] H. Levy, Delay computation and dynamic behavior of non-symmetric polling systems (Performance Evaluation, 10 (1) (1989) 35–51). · doi:10.1016/0166-5316(89)90004-7
[13] H. Levy, M. Sidi, Polling systems: applications, modeling and optimization (IEEE Transactions on Communications, COM-38 (10)(1990) 1750–1760). · doi:10.1109/26.61446
[14] J.D.C. Little, A proof of the queueing formula L = \(\lambda\) W (Operations Research, 9 (1961) 383–387). · Zbl 0108.14803
[15] C. Mack, T. Murphy, N.L. Webb, The efficiency of N machines uni-directionally patrolled by one operative when walking time and repair times are constants (Journal of the Royal Statistical Society Series B, 19 (1)(1957) 166–172). · Zbl 0090.35301
[16] C. Mack, The efficiency of N machines uni-directionally patrolled by one operative when walking time is constant and repair times are variable (Journal of the Royal Statistical Society Series B, 19 (1)(1957) 173–178). · Zbl 0090.35302
[17] J.A.C. Resing, Polling systems and multitype branching processes (Queueing Systems, 13 (1993) 409–426). · Zbl 0772.60069 · doi:10.1007/BF01149263
[18] I. Rubin, L.F.M. De Moraes, Message delay analysis for polling and token multiple-access schemes for local communication networks (IEEE Journal on Selected Areas in Communications, SAC-l (5)(1983) 935–947). · doi:10.1109/JSAC.1983.1145983
[19] D. Sarkar, W.I. Zangwill, Expected waiting time for nonsymmetric cyclic queueing systems–exact results and applications (Management Science, 35 (1989) 1463–1474). · Zbl 0684.90035 · doi:10.1287/mnsc.35.12.1463
[20] M.M. Srinivasan, H. Levy, A.G. Konheim, The individual station technique for the analysis of polling systems (Naval Research Logistics, 43 (1)(1996) 79–101). · Zbl 0862.60090 · doi:10.1002/(SICI)1520-6750(199602)43:1<79::AID-NAV5>3.0.CO;2-K
[21] G.B. Swartz, Polling in a loop system (Journal of the Association for Computing Machinery, 27 (1)(1980) 42–59). · Zbl 0438.94038
[22] H. Takagi, Queueing analysis of polling models: an update (In Stochastic Analysis of Computer and Communication Systems, H. Takagi (ed.), North-Holland, Amsterdam (1990) 267–318).
[23] H. Takagi, Queueing analysis of polling models: progress in 1990-1994 (In Frontiers in Queueing: Models, Methods and Problems, J.H. Dshalalow (ed.), CRC Press, Boca Raton (1997) 119–146). · Zbl 0871.60077
[24] H. Takagi, Analysis and application of polling models (In Performance Evaluation: Origins and Directions, G. Haring, C. Lindemann and M. Reiser (eds.), Lecture Notes in Computer Science, vol. 1769, Springer, Berlin (2000) 423–442).
[25] R.W. Wolff, Poisson arrivals see time averages (Operations Research, 30 (2) (1982) 223–231). · Zbl 0489.60096 · doi:10.1287/opre.30.2.223
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.