×

zbMATH — the first resource for mathematics

Non-trading day effects in asymmetric conditional and stochastic volatility models. (English) Zbl 1137.91424
Summary: It is well known that non-trading days (or holidays) can have significant effects on the returns in financial series. In this paper, we analyze three models of non-trading day effects in stochastic volatility models with leverage effects, namely (i) the approach based on the dummy variable in conditional volatility models; (ii) the approach based on a discrete time approximation of a continuous time stochastic volatility model and (iii) the twin non-trading day stochastic volatility model which nests the above two models. The three models are also estimated and tested within the asymmetric and exponential conditional volatility frameworks. All the models within the stochastic, asymmetric conditional and exponential conditional volatility frameworks are estimated and compared using a selection of financial returns series.

MSC:
91B28 Finance etc. (MSC2000)
91B84 Economic time series analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akaike H., Second International Symposium on Information Theory (1973) · Zbl 0283.62006
[2] DOI: 10.1080/07474930500243035 · Zbl 1075.62092
[3] Asai M., Finance Letters (2006)
[4] DOI: 10.1016/S0304-4076(03)00088-5 · Zbl 1012.62109
[5] F. Black (1976 ). Studies of stock market volatility changes . , pp. 177 -81 .
[6] Bollerslev T., Handbook of Econometrics 4 pp 2961– (1994)
[7] DOI: 10.2307/2330812
[8] DOI: 10.1016/0304-405X(82)90018-6
[9] DOI: 10.2307/1912773 · Zbl 0491.62099
[10] DOI: 10.1086/294743
[11] DOI: 10.1016/0304-405X(86)90004-8
[12] DOI: 10.1111/1467-9965.00049 · Zbl 0914.90021
[13] Glosten L., Journal of Finance 46 pp 1779– (1992)
[14] DOI: 10.2307/1392251
[15] DOI: 10.1016/0261-5606(90)90014-Q
[16] Heynen R. C., Journal of Derivatives 2 pp 50– (1994)
[17] DOI: 10.2307/2328253
[18] DOI: 10.2307/1392199
[19] DOI: 10.1111/1467-937X.00050 · Zbl 0910.90067
[20] DOI: 10.1016/S1058-3300(03)00038-7
[21] DOI: 10.1016/j.jempfin.2004.04.009
[22] DOI: 10.1016/S0378-4266(01)00225-4
[23] DOI: 10.1017/S0266466605050140 · Zbl 1072.62104
[24] DOI: 10.1016/0304-4076(90)90092-8 · Zbl 0719.60089
[25] DOI: 10.2307/2938260 · Zbl 0722.62069
[26] DOI: 10.2307/2670179 · Zbl 1072.62639
[27] DOI: 10.1016/S0304-4076(98)00016-5 · Zbl 0937.62110
[28] Schwarz G., Annals of Statistics 6 pp 461– (1978)
[29] Taylor S. J., Modelling financial time series (1986) · Zbl 1130.91345
[30] DOI: 10.1016/0304-405X(87)90009-2
[31] DOI: 10.1016/j.jeconom.2004.08.002 · Zbl 1335.91116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.