×

Various exact solutions of nonlinear Schrödinger equation with two nonlinear terms. (English) Zbl 1138.35411

Summary: Four kinds of exact solutions to nonlinear Schrödinger equation with two higher order nonlinear terms are obtained by a subsidiary ordinary differential equation method (sub-equation method for short). They are the bell type solitary waves, the kink type solitary waves, the algebraic solitary waves and the sinusoidal waves.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q51 Soliton equations
35A20 Analyticity in context of PDEs

Software:

RATH
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ablowitz, M.J.; Clarkson, P.A., Solitons, nonlinear evolution equations and inverse scattering transform, (1991), Cambridge University Press Cambridge · Zbl 0762.35001
[2] Rogers, C.; Shadwick, W.F., Bäcklund transformations, (1982), Academic Press New York · Zbl 0492.58002
[3] Wadati, M.; Sanuki, H.; Konno, K., Prog theor phys, 53, 419, (1975)
[4] Konno, K.; Wadati, M., Prog theor phys, 53, 1652, (1975)
[5] Matveev, V.A.; Salle, M.A., Darboux transformation and solitons, (1991), Springer Berlin · Zbl 0744.35045
[6] Hirota, R., J math phys, 14, 810, (1973)
[7] Cariello, F.; Tabor, M., Physica D, 53, 59, (1991)
[8] Liu, S.K.; Fu, Z.T.; Liu, S.D.; Zhao, Q., Phys lett A, 289, 69, (2001)
[9] Wang, M.L., Phys lett A, 199, 169, (1995)
[10] Wang, M.L., Phys lett A, 213, 279, (1996)
[11] Wang, M.L.; Zhou, Y.B.; Li, Z.B., Phys lett A, 216, 67, (1996)
[12] Parkes, E.J.; Duffy, B.R., Comput phys commun, 98, 288, (1996)
[13] Li, Z.B.; Liu, Y.P., Comput phys commun, 148, 256, (2002)
[14] Fan, E.G., Phys lett A, 277, 212, (2000)
[15] Yan, Z.Y., Phys lett A, 292, 100, (2001)
[16] Li, B.; Chen, Y.; Zhang, H.Q., Chaos, solitons & fractals, 15, 647, (2003)
[17] Yomba, E., Chaos, solitons & fractals, 20, 1135, (2004)
[18] Yomba, E., Chaos, solitons & fractals, 21, 75, (2004)
[19] Yomba, E., Chaos, solitons & fractals, 22, 321, (2004)
[20] Zhou, Y.B.; Wang, M.L.; Wang, Y.M., Phys lett A, 308, 31, (2003)
[21] Zhou, Y.B.; Wang, M.L.; Miao, T.D., Phys lett A, 323, 77, (2004)
[22] Wang, M.L.; Zhou, Y.B., Phys lett A, 318, 84, (2003)
[23] Wang, M.L.; Li, X.Z., Chaos, solitons & fractals, 24, 1257, (2005)
[24] Li, X.Y.; Yang, S.; Wang, M.L., Chaos, solitons & fractals, 25, 629, (2005)
[25] Yomba, E., Phys lett A, 336, 463, (2005)
[26] Sirendaoreji, X.; Jiong, S., Phys lett A, 309, 387, (2003)
[27] Robert, W.M.; Vsvolod, V.A.; Yuri, S.K.; John, D.L., Phys rev E, 54, 2936, (1996)
[28] Hayata, K.; Koshiba, M., Phys rev E, 51, 1499, (1995)
[29] Zhou, C.T.; He, X.T.; Chen, S.G., Phys rev A, 46, 2277, (1992)
[30] Zhao, D.; Luo, H.G.; Wang, S.J.; Zuo, W., Chaos, solitons & fractals, 24, 533, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.