×

zbMATH — the first resource for mathematics

Common fixed point theorems of Gregus type for weakly compatible mappings satisfying generalized contractive conditions. (English) Zbl 1138.54031
Let \( (X,d) \) be a metric space and \( A, B, S, T : X \to X \) four mappings. The author gives some metric conditions which imply that \( A, B, S \) and \( T \) have a unique common fixed point.

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aamri, M.; El Moutawakil, D., Some new common fixed point theorems under strict contractive conditions, J. math. anal. appl., 270, 181-188, (2002) · Zbl 1008.54030
[2] Aliouche, A., A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type, J. math. anal. appl., 322, 2, 796-802, (2006) · Zbl 1111.47046
[3] Altun, I.; Turkoglu, D.; Rhoades, B.E., Fixed points of weakly compatible mappings satisfying a general contractive condition of integral type, Fixed point theory appl., 2007, (2007), article ID 17301 · Zbl 1153.54022
[4] Branciari, A., A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. math. math. sci., 29, 531-536, (2002) · Zbl 0993.54040
[5] Djoudi, A.; Nisse, L., Gregus type fixed points for weakly compatible mappings, Bull. belg. math. soc., 10, 369-378, (2003) · Zbl 1040.54019
[6] Djoudi, A.; Aliouche, A., Common fixed point theorems of Gregus type for weakly compatible mappings satisfying contractive conditions of integral type, J. math. anal. appl., 329, 1, 31-45, (2007) · Zbl 1116.47047
[7] Gregus, M., A fixed point theorem in Banach spaces, Boll. unione mat. ital., 17-A, 5, 193-198, (1980) · Zbl 0538.47035
[8] Jungck, G., Compatible mappings and common fixed points, Int. J. math. math. sci., 9, 771-779, (1986) · Zbl 0613.54029
[9] Jungck, G.; Murthy, P.P.; Cho, Y.J., Compatible mappings of type (A) and common fixed points, Math. japonica, 38, 2, 381-390, (1993) · Zbl 0791.54059
[10] Jungck, G., Common fixed points for non-continuous non-self maps on non-metric spaces, Far east J. math. sci. (FJMS), 4, 2, 199-215, (1996) · Zbl 0928.54043
[11] Murthy, P.P.; Cho, Y.J.; Fisher, B., Compatible mappings of type (A) and common fixed points of Gregus, Glas. math., 30, 50, 335-341, (1995) · Zbl 0876.47037
[12] Liu, W.; Wu, J.; Li, Z., Common fixed points of single-valued and multi-valued maps, Int. J. math. math. sci., 19, 3045-3055, (2005) · Zbl 1087.54019
[13] Pant, R.P., Common fixed points of noncommuting mappings, J. math. anal. appl., 188, 436-440, (1994) · Zbl 0830.54031
[14] Pathak, H.K.; Khan, M.S., Compatible mappings of type (B) and common fixed point theorems of Gregus type, Czechoslovak math. J., 45, 120, 685-698, (1995) · Zbl 0848.54030
[15] Pathak, H.K.; Cho, Y.J.; Kang, S.M.; Lee, B.S., Fixed point theorems for compatible mappings of type (P) and applications to dynamic programming, Matematiche, 1, 15-33, (1995) · Zbl 0877.54038
[16] Pathak, H.K.; Cho, Y.J.; Khan, S.M.; Madharia, B., Compatible mappings of type (C) and common fixed point theorems of Gregus type, Demonstratio math., 31, 3, 499-518, (1998) · Zbl 0922.54036
[17] Pathak, H.K.; Khan, M.S.; Liu, Z.; Ume, J.S., Fixed point theorems in metrically convex spaces and applications, J. nonlinear convex anal., 4, 2, 231-244, (2003) · Zbl 1041.54038
[18] Pathak, H.K.; Khan, M.S.; Rakesh, T., A common fixed point theorem and its application to nonlinear integral equations, Comput. math. appl., 53, 961-971, (2007) · Zbl 1126.45003
[19] Rhoades, B.E., Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. math. math. sci., 63, 4007-4013, (2003) · Zbl 1052.47052
[20] Vijayaraju, P.; Rhoades, B.E.; Mohanraj, R., A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type, Int. J. math. math. sci., 15, 2359-2364, (2005) · Zbl 1113.54027
[21] Sessa, S., On a weak commutativity condition of mappings in fixed point considerations, Publ. inst. math. (beograd), 32, 46, 149-153, (1982) · Zbl 0523.54030
[22] Singh, S.P.; Meade, B.A., On common fixed point theorems, Bull. austral. math. soc., 16, 49-53, (1977) · Zbl 0351.54040
[23] Suzuki, T., Meir – keeler contractions of integral type are still meir – keeler contractions, Int. J. math. math. sci., 2007, (2007), article ID 39281 · Zbl 1142.54019
[24] Zhang, X., Common fixed point theorems for some new generalized contractive type mappings, J. math. anal. appl., 333, 2, 780-786, (2007) · Zbl 1133.54028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.