# zbMATH — the first resource for mathematics

Dynamic indifference valuation via convex risk measures. (English) Zbl 1138.91502
Summary: The (subjective) indifference value of a payoff in an incomplete financial market is that monetary amount which leaves an agent indifferent between buying or not buying the payoff when she always optimally exploits her trading opportunities. We study these values over time when they are defined with respect to a dynamic monetary concave utility functional, that is, minus a dynamic convex risk measure. For that purpose, we prove some new results about families of conditional convex risk measures. We study the convolution of abstract conditional convex risk measures and show that it preserves the dynamic property of time-consistency. Moreover, we construct a dynamic risk measure (or utility functional) associated to superreplication in a market with trading constraints and prove that it is time-consistent. By combining these results, we deduce that the corresponding indifference valuation functional is again time-consistent. As an auxiliary tool, we establish a variant of the representation theorem for conditional convex risk measures in terms of equivalent probability measures.

##### MSC:
 91B30 Risk theory, insurance (MSC2010) 91B16 Utility theory 91G70 Statistical methods; risk measures
Full Text:
##### References:
 [1] Ph.Artzner, F.Delbaen, J.M.Eber, D.Heath, and H.Ku(2004 ):Annals of Operations Research, 152 , 5 -22 . [2] Barrieu P., Mathematics of Finance pp 13– (2004) · doi:10.1090/conm/351/06389 [3] DOI: 10.1007/s00780-005-0152-0 · Zbl 1088.60037 · doi:10.1007/s00780-005-0152-0 [4] DOI: 10.1016/S0167-6687(03)00140-9 · Zbl 1072.91025 · doi:10.1016/S0167-6687(03)00140-9 [5] DOI: 10.1016/S0304-405X(01)00075-7 · doi:10.1016/S0304-405X(01)00075-7 [6] Cerny A., Mathematical Finance - Bachelier Congress 2000 pp 175– (2002) · doi:10.1007/978-3-662-12429-1_9 [7] Cheridito P., Electronic J. Prob. 11 pp 57– (2006) · Zbl 1184.91109 · doi:10.1214/EJP.v11-302 [8] Cheridito P., Time-Consistency of Indifference Prices and Monetary Utility Functions (2006) [9] DOI: 10.1111/j.1467-9965.1992.tb00041.x · Zbl 0900.90101 · doi:10.1111/j.1467-9965.1992.tb00041.x [10] F.Delbaen(2000 ): Coherent Risk Measures, lecture notes, Scuola Normale Superiore di Pisa , available athttp://www.math.ethz.ch/delbaen · Zbl 1320.91066 [11] Delbaen F., Advances in Mathematical Economics 8 pp 75– (2006) [12] Delbaen F., Seminaire de Probabilites XXXIX pp 215– (2006) [13] DOI: 10.1007/BF01450498 · Zbl 0865.90014 · doi:10.1007/BF01450498 [14] Detlefsen K., Finance Stochastics 9 pp 539– (2005) [15] DOI: 10.1007/s004400050122 · Zbl 0882.60063 · doi:10.1007/s004400050122 [16] DOI: 10.1007/s007800200072 · Zbl 1041.91039 · doi:10.1007/s007800200072 [17] Follmer F., An Introduction in Discrete Time, 2. ed. (2004) [18] DOI: 10.1007/s007800050074 · Zbl 0965.60046 · doi:10.1007/s007800050074 [19] V.Henderson, and D.Hobson(2004 ): Utility Indifference Pricing-An Overview,Preprint, University of Bath, to Appear in Volume on Indifference Pricing, Princeton University Press, available athttp://staff.bath.ac.uk/masdgh · Zbl 1158.91379 [20] Hodges S. D., Rev. Futures Markets 8 pp 222– (1989) [21] DOI: 10.1007/PL00013530 · Zbl 0993.91023 · doi:10.1007/PL00013530 [22] Jobert A., Math. Finance (2006) [23] Jouini E., Math. Finance (2005) [24] S.Kloppel, and M.Schweizer(2005 ): Dynamic Utility Indifference Valuation via Convex Risk Measures , NCCR FINRISK working paper No. 209, ETH Zurich, August 2005, available athttp://www.nccr-finrisk.unizh.ch/wp/index.php?action=queryid=209 [25] S.Kloppel, and M.Schweizer(2006 ): Utility-Based Good Deal Bounds , preprint, ETH Zurich. [26] Larsen K., Finance Stochastics 9 pp 177– (2005) [27] Peng S., Stochastic Methods in Finance pp 165– (2004) · doi:10.1007/978-3-540-44644-6_4 [28] DOI: 10.1016/j.spa.2004.03.004 · Zbl 1114.91055 · doi:10.1016/j.spa.2004.03.004 [29] DOI: 10.1111/j.1467-9965.2005.00252.x · Zbl 1107.91059 · doi:10.1111/j.1467-9965.2005.00252.x [30] Rosazza Gianin E., Insurance: Mathematics and Economics 39 pp 19– (2004) [31] DOI: 10.1111/1467-9965.00093 · doi:10.1111/1467-9965.00093 [32] DOI: 10.1111/j.0960-1627.2004.00186.x · Zbl 1090.91030 · doi:10.1111/j.0960-1627.2004.00186.x [33] DOI: 10.1111/j.1467-9965.2006.00277.x · Zbl 1145.91037 · doi:10.1111/j.1467-9965.2006.00277.x [34] Xu M., Ann. Finance. 2 pp 51– (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.