×

Explicit and exact travelling wave solutions for the generalized derivative Schrödinger equation. (English) Zbl 1139.35092

Summary: A new auxiliary equation expansion method and its algorithm is proposed for studying a first order nonlinear ordinary differential equation with a sixth-degree nonlinear term. Being concise and straightforward, the method is applied to the generalized derivative Schrödinger equation. As a result, some new exact travelling wave solutions are obtained which include bright and dark solitary wave solutions, triangular periodic wave solutions and singular solutions. This algorithm can also be applied to other nonlinear wave equations in mathematical physics.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q51 Soliton equations
35A20 Analyticity in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ablowitz, M.J.; Clarkson, P.A., Solitons, nonlinear evolution equations and inverse scattering, (1991), Cambridge University Press Cambridge · Zbl 0762.35001
[2] Wadati, M., J phys soc jpn, 38, 673, (1975)
[3] Wadati, M., J phys soc jpn, 38, 681, (1975)
[4] Wadati, M.; Sanuki, H.; Konno, K.; Konno, K.; Wadati, M., Prog theor phys, Prog theore phys, 53, 1652, (1975)
[5] Matveev, V.B.; Salle, M.A., Darboux transformation and solitons, (1991), Springer Berlin · Zbl 0744.35045
[6] Gu, C.H.; Hu, H.S.; Zhou, Z.X., Darboux transformations in soliton theory and its geometric applications, (1999), Shanghai Sci Tech Publ Shanghai
[7] Rogers, C.; Schief, W.K., Bäcklund and Darboux transformations, geometry and modern applications in soliton theory, (2002), Cambridge University Press Cambridge · Zbl 1019.53002
[8] Hirota, R., Direct methods in soliton theory, () · Zbl 0124.21603
[9] Olver, P.J., Applications of Lie groups to differential equations, (1993), Springer New York · Zbl 0785.58003
[10] Bluman, G.W.; Kumei, S., Symmetries and differential equations, (1989), Springer Berlin · Zbl 0718.35004
[11] Yan, C.T., Phys lett A, 224, 77, (1996)
[12] Fan, E.G., Phys lett A, 277, 212, (2000)
[13] Yan, Z.Y.; Zhang, H.Q., Phys lett A, 292, 100, (2001)
[14] Fu, Z.T., Phys lett A, 299, 507, (2002)
[15] Fan, E.G., J phys A, 35, 6853, (2002) · Zbl 1039.35029
[16] Conte, R.; Musette, M., J phys A: math gen, 25, 5609, (1992)
[17] Huang, D.J.; Zhang, H.Q.; Huang, D.J.; Zhang, H.Q., Chaos, solitons & fractals, Chaos, solitons & fractals, 23, 601, (2005)
[18] Van Saarloos, W.; Hohenberg, P.C., Phys D, 56, 303, (1992)
[19] Florjanczyk, M.; Gagnon, L.; Cariello, F.; Tabor, M., Phys rev A, Phys D, 39, 77, (1989)
[20] Wu, W.T., Algorithms and computation, (1994), Springer Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.