×

zbMATH — the first resource for mathematics

Modified extended tanh-function method for solving nonlinear partial differential equations. (English) Zbl 1139.35389
Summary: Based on computerized symbolic computation, modified extended tanh-method for constructing multiple travelling wave solutions of nonlinear evolution equations is presented and implemented in a computer algebraic system. Applying this method, with the aid of Maple, we consider some nonlinear evolution equations in mathematical physics such as the nonlinear partial differential equation, nonlinear Fisher-type equation, ZK-BBM equation, generalized Burgers-Fisher equation and Drinfeld-Sokolov system. As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extended tanh-function method and other more sophisticated methods.

MSC:
35Q53 KdV equations (Korteweg-de Vries equations)
35A20 Analyticity in context of PDEs
35-04 Software, source code, etc. for problems pertaining to partial differential equations
35K55 Nonlinear parabolic equations
Software:
Maple; MACSYMA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ablowitz, M.; Clarkson, P.A., Soliton, nonlinear evolution equations and inverse scattering, (1991), Cambridge University Press New York · Zbl 0762.35001
[2] Hirota, R., Phys rev lett, 27, 1192, (1971)
[3] Wadati, M., J phys soc jpn, 38, 673, (1975)
[4] Wadati, M., J phys soc jpn, 38, 681, (1975)
[5] Wang, M.; Li, Xi., Phys lett A, 343, 48, (2005)
[6] Wang, M., Phys lett A, 265, 353, (2000)
[7] Yan, Z., Int J modern phys C, 14, 277, (2003)
[8] Bai, C.-L.; Zhao, H., Chaos, solitons & fractals, 27, 1026, (2006)
[9] Li, D.-S.; Gao, F.; Zhang, H.-Q., Chaos, solitons & fractals, 20, 1021, (2004)
[10] Khuri, S.A., Chaos, solitons & fractals, 20, 1037, (2004)
[11] Abdusalam, H.A., Int J nonlinear sci numer simul, 6, 2, 99, (2005)
[12] Zayed, E.M.E.; Zedan, H.A.; Gepreel, K.A., Int J nonlinear sci numer simul, 5, 3, 221, (2004) · Zbl 1069.35080
[13] Fan, E., J phys A: math gen, 36, 7009, (2003) · Zbl 1167.35324
[14] Chen, H.; Zhang, H., Chaos, solitons & fractals, 19, 71, (2004)
[15] Parkes, E.J.; Duffy, B.R., Comput phys commun, 98, 288, (1996)
[16] E1-Wakil, S.A.; El-Labany, S.K.; Zahran, M.A.; Sabry, R., Comput phys commun, 158, 113, (2004)
[17] Fan, E., Phys lett A, 277, 212, (2000)
[18] Fan, E., Naturforsch, 56A, 312, (2001)
[19] El-Wakil, S.A.; El-Labany, S.K.; Zahran, M.A.; Sabry, R., Appl math comput, 161, 403, (2005)
[20] El-Wakil, S.A.; El-Labany, S.K.; Zahran, M.A.; Sabry, R., Phys lett A, 299, 179, (2002)
[21] Wazwaz, A.M., Appl math comput, 159, 539, (2004)
[22] Wazwaz, A.M., Commun nonlinear sci numer simul, 11, 311, (2006)
[23] Goktas, U.; Hereman, E., J symb comput, 24, 591, (1997)
[24] Wazwaz, A.M., Appl math comput, 169, 713, (2005)
[25] Wazwaz, A.M., Appl math comput, 154, 713, (2004)
[26] Glasner, K., J comput phys, 174, 695, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.