×

zbMATH — the first resource for mathematics

On the stability of the additive Cauchy functional equation in random normed spaces. (English) Zbl 1139.39040
Summary: Some stability results for the functional equations of Cauchy and Jensen in probabilistic setting are proved by using the fixed point method.

MSC:
39B82 Stability, separation, extension, and related topics for functional equations
39B52 Functional equations for functions with more general domains and/or ranges
60H25 Random operators and equations (aspects of stochastic analysis)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alsina, C., On the stability of a functional equation arising in probabilistic normed spaces, (), 263-271
[2] Aoki, T., On the stability of the linear transformation in Banach spaces, J. math. soc. Japan, 2, 64-66, (1950) · Zbl 0040.35501
[3] Bourgin, D.G., Classes of transformations and bordering transformations, Bull. amer. math. soc., 57, 223-237, (1951) · Zbl 0043.32902
[4] Cădariu, L.; Radu, V., Fixed points and the stability of Jensen’s functional equation, J. ineq. pure appl. math., 4, 1, (2003), Article 4, 7 pp.
[5] Cădariu, L.; Radu, V., On the stability of the Cauchy functional equation: A fixed points approach, (), 323-350
[6] Czerwik, S., Functional equations and inequalities in several variables, (2002), World Scientific River Edge, NJ · Zbl 1011.39019
[7] Dales, H.G.; Moslehian, M.S., Stability of mappings on multi-normed spaces, Glasgow math. J., 49, 2, 321-332, (2007) · Zbl 1125.39023
[8] Gajda, Z., On stability of additive mappings, Int. J. math. math. sci., 14, 431-434, (1991) · Zbl 0739.39013
[9] Hadžić, O.; Pap, E., Fixed point theory in probabilistic metric spaces, (2001), Kluwer Academic Publishers Dordrecht
[10] Hadžić, O.; Pap, E.; Radu, V., Generalized contraction mapping principles in probabilistic metric spaces, Acta math. hungar., 101, 131-148, (2003) · Zbl 1050.47052
[11] Hyers, D.H., On the stability of the linear functional equation, Proc. natl. acad. sci. USA, 27, 222-224, (1941) · Zbl 0061.26403
[12] Hyers, D.H.; Isac, G.; Rassias, Th.M., Stability of functional equations in several variables, (1998), Birkhäuser Basel · Zbl 0894.39012
[13] Jung, S.-M., Hyers – ulam – rassias stability of Jensen’s equation and its application, Proc. amer. math. soc., 126, 3137-3143, (1998) · Zbl 0909.39014
[14] Jung, S.-M., Hyers – ulam – rassias stability of functional equations in mathematical analysis, (2001), Hadronic Press Palm Harbor · Zbl 0980.39024
[15] Margolis, B.; Diaz, J.B., A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. amer. math. soc., 126, 74, 305-309, (1968) · Zbl 0157.29904
[16] Miheţ, D.; Radu, V., Generalized pseudo-metrics and fixed points in probabilistic metric spaces, Carpathian J. math., 23, 1-2, 126-132, (2007) · Zbl 1199.54229
[17] Mirmostafaee, A.K.; Mirzavaziri, M.; Moslehian, M.S., Fuzzy stability of the Jensen functional equation, Fuzzy sets and systems, 159, 6, 730-738, (2008) · Zbl 1179.46060
[18] Mirmostafaee, A.K.; Moslehian, M.S., Fuzzy versions of hyers – ulam – rassias theorem, Fuzzy sets and systems, 159, 720-729, (2008) · Zbl 1178.46075
[19] Mirzavaziri, M.; Moslehian, M.S., A fixed point approach to stability of a quadratic equation, Bull. braz. math. soc., 37, 3, 361-376, (2006) · Zbl 1118.39015
[20] Radu, V., The fixed point alternative and the stability of functional equations, Sem. fixed point theory, 4, 1, 91-96, (2003) · Zbl 1051.39031
[21] Rassias, Th.M., On the stability of the linear mapping in Banach spaces, Proc. amer. math. soc., 72, 297-300, (1978) · Zbl 0398.47040
[22] Schweizer, B.; Sklar, A., Probabilistic metric spaces, (1983), North-Holland · Zbl 0546.60010
[23] Šerstnev, A.N., On the notion of a random normed space, Dokl. akad. nauk SSSR, 149, 280-283, (1963), (in Russian)
[24] Ulam, S.M., Problems in modern mathematics, (1960), Science Editions, Wiley New York, Chapter VI · Zbl 0137.24201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.